RESEARCH ARTICLE

Decoupling optimization of integrated energy system based on energy quality character

  • Shixi MA ,
  • Shengnan SUN ,
  • Hang WU ,
  • Dengji ZHOU ,
  • Huisheng ZHANG ,
  • Shilie WENG
Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 05 Aug 2018

Accepted date: 12 Oct 2018

Published date: 21 Dec 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Connections among multi-energy systems become increasingly closer with the extensive application of various energy equipment such as gas-fired power plants and electricity-driven gas compressor. Therefore, the integrated energy system has attracted much attention. This paper establishes a gas-electricity joint operation model, proposes a system evaluation index based on the energy quality character after considering the grade difference of the energy loss of the subsystem, and finds an optimal scheduling method for integrated energy systems. Besides, according to the typical load characteristics of commercial and residential users, the optimal scheduling analysis is applied to the integrated energy system composed of an IEEE 39 nodes power system and a 10 nodes natural gas system. The results prove the feasibility and effectiveness of the proposed method.

Cite this article

Shixi MA , Shengnan SUN , Hang WU , Dengji ZHOU , Huisheng ZHANG , Shilie WENG . Decoupling optimization of integrated energy system based on energy quality character[J]. Frontiers in Energy, 2018 , 12(4) : 540 -549 . DOI: 10.1007/s11708-018-0597-4

Acknowledgments

This work was supported by the National Fundamental Research Project (JCKY2017208A001), the Engineering Academician Advisory Project (2016-XZ-29), the National Natural Science Foundation of China (Grant No. 51876116), and the Postdoctoral Science Fund (No. 2018T10395).
1
Bai L Q, Li F X, Cui H T, Jiang T, Sun H B, Zhu J X. Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty. Applied Energy, 2016, 167: 270–279

DOI

2
Zeng Q, Fang J K, Li J H, Chen Z. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. Applied Energy, 2016, 184: 1483–1492

DOI

3
Zheng J H, Wu Q H, Jing Z X. Coordinated scheduling strategy to optimize conflicting benefits for daily operation of integrated electricity and gas networks. Applied Energy, 2017, 192: 370–381

DOI

4
Ghasemi A, Banejad M, Rahimiyan M. Integrated energy scheduling under uncertainty in a micro energy grid. IET Generation, Transmission & Distribution, 2018, 12(12): 2887–2896

DOI

5
Gu W, Wang J, Lu S, Luo Z, Wu C Y. Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings. Applied Energy, 2017, 199: 234–246

DOI

6
Pan Z G, Guo Q L, Sun H B. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow. Applied Energy, 2016, 167: 230–243

DOI

7
Collins S, Deane J P, Poncelet K, Panos E, Pietzcker R C, Delarue E, Ó Gallachóir B P. Integrating short term variations of the power system into integrated energy system models: a methodological review. Renewable & Sustainable Energy Reviews, 2017, 76: 839–856

DOI

8
Rashidi H, Khorshidi J. Exergoeconomic analysis and optimization of a solar based multigeneration system using multiobjective differential evolution algorithm. Journal of Cleaner Production, 2018, 170: 978–990

DOI

9
Liu J L, Wang A N, Qu Y H, Wang W H. Coordinated operation of multi-integrated energy system based on linear weighted sum and grasshopper optimization algorithm. IEEE Access: Practical Innovations, Open Solutions, 2018, 6: 42186–42195

DOI

10
Liu J N, Zhong H Z, Zeng K W, Fan H X, Chen Q X. Optimal scheduling of multiple energy system considering power to gas unit. In: 2017 IEEE Conference on Energy Internet and Energy System Integration, Beijing, China, 2017: 58–63

11
Wang Y L, Yu H Y, Yong M Y, Huang Y J, Zhang F L, Wang X H. Optimal scheduling of integrated energy systems with combined heat and power generation, photovoltaic and energy storage considering battery lifetime loss. Energies, 2018, 11(7): 1676

DOI

12
Ye J, Yuan R X. Integrated natural gas, heat, and power dispatch considering wind power and power-to-gas. Sustainability, 2017, 9(4): 602

DOI

13
Chen S, Wei Z N, Sun G Q, Cheung K W, Wang D. Identifying optimal energy flow solvability in electricity-gas integrated energy systems. IEEE Transactions on Sustainable Energy, 2017, 8(2): 846–854

DOI

14
Jiang Y B, Xu J, Sun Y Z, Wei C Y, Wang J, Liao S Y, Ke D P, Li X, Yang J, Peng X T. Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources. Applied Energy, 2018, 211: 237–248

DOI

15
Zhang X J, Karady G G, Ariaratnam S T. Optimal allocation of CHP-based distributed generation on urban energy distribution networks. IEEE Transactions on Sustainable Energy, 2014, 5(1): 246–253

DOI

16
Martinez-Mares A, Fuerte-Esquivel C R. A unified gas and power flow analysis in natural gas and electricity coupled networks. IEEE Transactions on Power Systems, 2012, 27(4): 2156–2166

DOI

17
Jiang Z H, Yu X W. Modeling and control of an integrated wind power generation and energy storage system. In: 2009 IEEE Power & Energy Society General Meeting, Calgary, Canada, 2009, 1–8: 2612–2619

18
Ma S X, Zhou D J, Zhang H S, Lu Z H. Modeling and optimal operation of a network of energy hubs system with distributed energy resources. In: Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, 2017

19
Gholamian E, Hanafizadeh P, Habibollahzade A, Ahmadi P. Evolutionary based multi-criteria optimization of an integrated energy system with SOFC, gas turbine, and hydrogen production via electrolysis. International Journal of Hydrogen Energy, 2018, 43(33): 16201–16214

DOI

20
Chen Z S, Xie W H, Hu P, Jia L, Shi M. An effective thermodynamic transformation analysis method for actual irreversible cycle. Science China. Technological Sciences, 2013, 56(9): 2188–2193

DOI

21
Chen S, Wei Z N,Sun G G, Sun Y L, Zang H X, Zhu Y. Optimal power and gas how with a limited number of control actions IEEE Transactions on Smart Grid , 2018, 9(5): 5371–5380

DOI

22
Hu Y, Lian H, Bie Z, Zhou B. Unified probabilistic gas and power flow. Journal of Modern Power Systems and Clean Energy, 2017, 5(3): 400–411

DOI

23
Kang C A, Brandt A R, Durlofsky L J. Optimal operation of an integrated energy system including fossil fuel power generation, CO2 capture and wind. Energy, 2011, 36(12): 6806–6820

DOI

24
Granovskii M, Dincer I, Rosen M A. Exergy and industrial ecology: an application to an integrated energy system. International Journal of Exergy, 2008, 5(1): 52–63

DOI

25
Ma S X, Zhou D J, Zhang H S, Lu Z H. Micro gas turbine/renewable hybrid power system for distributed generation: effects of ambient conditions on control strategy. In: Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, 2016

26
Damousis I G, Bakirtzis A G, Dokopoulos P S. A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems, 2004, 19(2): 1165–1172

DOI

27
An S, Li Q, Gedra T W. Natural gas and electricity optimal power flow. In: Proceedings of 2003 IEEE PES Transmission and Distribution Conference & Exposition, Dallas, TX, USA, 2003, 1–3: 138–143

28
Qi S X, Wang X L, Wang Y F, Tian S J, Wang R G. Integrated probabilistic energy flow analysis in natural gas and electricity coupled systems considering the randomness of wind power. In: 2017 IEEE Conference on Energy Internet and Energy System Integration, 2017

29
Yuan Y, Kubokawa J, Sasaki H. A solution of optimal power flow with multicontingency transient stability constraints. IEEE Transactions on Power Systems, 2003, 18(3): 1094–1102

DOI

30
Chicco G, Napoli R, Postolache P, Scutariu M, Toader C M. Customer characterization options for improving the tariff offer. IEEE Transactions on Power Systems, 2003, 18(1): 381–387

DOI

Outlines

/