Comparison of modeling methods for wind power prediction: a critical study
Received date: 21 Apr 2017
Accepted date: 11 Sep 2017
Published date: 15 Jun 2020
Copyright
Prediction of power generation of a wind turbine is crucial, which calls for accurate and reliable models. In this work, six different models have been developed based on wind power equation, concept of power curve, response surface methodology (RSM) and artificial neural network (ANN), and the results have been compared. To develop the models based on the concept of power curve, the manufacturer’s power curve, and to develop RSM as well as ANN models, the data collected from supervisory control and data acquisition (SCADA) of a 1.5 MW turbine have been used. In addition to wind speed, the air density, blade pitch angle, rotor speed and wind direction have been considered as input variables for RSM and ANN models. Proper selection of input variables and capability of ANN to map input-output relationships have resulted in an accurate model for wind power prediction in comparison to other methods.
Rashmi P. SHETTY , A. SATHYABHAMA , P. Srinivasa PAI . Comparison of modeling methods for wind power prediction: a critical study[J]. Frontiers in Energy, 2020 , 14(2) : 347 -358 . DOI: 10.1007/s11708-018-0553-3
1 |
International Energy Agency (IEA). Technology Roadmap: Wind Energy. 2013, available at the website of iea.org/publications/freepublications/publication/name,43771,en.html
|
2 |
Sangroya D, Jogendra K N. Development of wind energy in India. International Journal of Renewable Energy Research, 2015, 5(1): 1–13
|
3 |
International Energy Agency (IEA). World energy outlook—2013. 2013, available at the website of iea.org/publications/freepublications/publication/WEO2013.pdf
|
4 |
Razavieh A, Sedaghat A, Ayodele R, Mostafaeipour A. Worldwide wind energy status and the characteristics of wind energy in Iran, case study: the province of Sistan and Baluchestan. International Journal of Sustainable Energy, 2017, 36(2): 103–123
|
5 |
Ipakchi A, Albuyeh F. Grid of the future. IEEE Power & Energy Magazine, 2009, 7(2): 52–62
|
6 |
Han S, Yang Y, Liu Y. The comparison of BP network and RBF network in wind power prediction application. In: Proceedings of Second International Conference on Bio-Inspired Computing: Theories and Applications. 2007, 173–176
|
7 |
Ayodele T R, Ogunjuyigbe A S. Wind energy resource, wind energy conversion system modelling and integration: a survey. International Journal of Sustainable Energy, 2015, 34(10): 657–671
|
8 |
Fang D, Wang J. A novel application of artificial neural network for wind speed estimation. International Journal of Sustainable Energy, 2017, 36(5): 415–429
|
9 |
Wang Z, Wang W, Wang B. Regional wind power forecasting model with NWP grid data optimized. Frontiers in Energy, 2017, 11(2): 175–183
|
10 |
Kaur S, Verma Y P, Agrawal S. Optimal generation scheduling in power system using frequency prediction through ANN under ABT environment. Frontiers in Energy, 2013, 7(4): 468–478
|
11 |
Rezvani A, Esmaeily A, Etaati H, Mohammadinodoushan M. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode. Frontiers in Energy, 2017, https://doi.org/10.1007/s11708-017-0446-x
|
12 |
International Electrotechnical Commission.Wind turbine generator systems – Part 12: wind turbine power performance testing. 1998, IEC61400–12, available at the website of iec.ch/p preview/info_iec61400–12%7Bed1.0%7Den.pdf
|
13 |
Thapar V, Agnihotri G, Sethi V K. Critical analysis of methods for mathematical modelling of wind turbines. Renewable Energy, 2011, 36(11): 3166–3177
|
14 |
Shokrzadeh S, Jafari Jozani M, Bibeau E. Wind turbine power curve modeling using advanced parametric and nonparametric methods. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1262–1269
|
15 |
Lydia M, Kumar S S, Selvakumar A I, Prem Kumar G E. A comprehensive review on wind turbine power curve modeling techniques. Renewable & Sustainable Energy Reviews, 2014, 30: 452–460
|
16 |
Marvuglia A, Messineo A. Monitoring of wind farms’ power curves using machine learning techniques. Applied Energy, 2012, 98: 574–583
|
17 |
Üstüntaş T, Şahin A D. Wind turbine power curve estimation based on cluster center fuzzy logic modeling. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(5): 611–620
|
18 |
Kusiak A, Zheng H, Song Z. Models for monitoring wind farm power. Renewable Energy, 2009, 34(3): 583–590
|
19 |
Lydia M, Selvakumar A I, Kumar S S, Kumar G E. Advanced algorithms for wind turbine power curve modeling. IEEE Transactions on Sustainable Energy, 2013, 4(3): 827–835
|
20 |
Carrillo C, Obando Montaño A F, Cidrás J, Díaz-Dorado E. Review of power curve modelling for wind turbines. Renewable & Sustainable Energy Reviews, 2013, 21: 572–581
|
21 |
Gill S, Stephen B, Galloway S. Wind turbine condition assessment through power curve copula modeling. IEEE Transactions on Sustainable Energy, 2012, 3(1): 94–101
|
22 |
Ouyang T, Kusiak A, He Y. Modeling wind-turbine power curve: a data partitioning and mining approach. Renewable Energy, 2017, 102: 1–8
|
23 |
Goudarzi A, Davidson I E, Ahmadi A, Venayagamoorthy G K. Intelligent analysis of wind turbine power curve models. In: 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG). 2014, 1–7
|
24 |
Tu Y L, Chang T J, Chen C L, Chang Y J. Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks. Energy Conversion and Management, 2012, 59: 114–121
|
25 |
Li S, Wunsch D C, O’Hair E, Giesselmann M G. Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. Journal of Solar Energy Engineering, 2001, 123(4): 327–332
|
26 |
Liu Z, Gao W, Wan Y H, Muljadi E. Wind power plant prediction by using neural networks. In: 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, 3154–3160
|
27 |
Schlechtingen M, Santos I F, Achiche S. Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Transactions on Sustainable Energy, 2013, 4(3): 671–679
|
28 |
Lapira E, Brisset D, Davari Ardakani H, Siegel D, Lee J. Wind turbine performance assessment using multi-regime modeling approach. Renewable Energy, 2012, 45: 86–95
|
29 |
Mabel M C, Fernandez E. Analysis of wind power generation and prediction using ANN: a case study. Renewable Energy, 2008, 33(5): 986–992
|
30 |
Mabel M C, Fernandez E. Estimation of energy yield from wind farms using artificial neural networks. IEEE Transactions on Energy Conversion, 2009, 24(2): 459–464
|
31 |
Reddy S S, Jung C M, Seog K J. Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique. Frontiers in Energy, 2016, 10(1): 105–113
|
32 |
Kasiri H, Abadeh M S, Momeni H R. Optimal estimation and control of WECS via a genetic neuro fuzzy approach. Energy, 2012, 40(1): 438–444
|
33 |
Kusiak A, Li W. Short-term prediction of wind power with a clustering approach. Renewable Energy, 2010, 35(10): 2362–2369
|
34 |
Habib M A, Said S A, El-Hadidy M A, Al-Zaharna I. Optimization procedure of a hybrid photovoltaic wind energy system. Energy, 1999, 24(11): 919–929
|
35 |
Abouzahr I, Ramakumar R. Loss of power supply probability of stand-alone wind electric conversion systems: A closed form solution approach. IEEE Transactions on Energy Conversion, 1990, 5(3): 445–452
|
36 |
Abouzahr I, Ramakumar R. An approach to assess the performance of utility-interactive wind electric conversion systems. IEEE Transactions on Energy Conversion, 1991, 6(4): 627–638
|
37 |
Yang H X, Lu L, Burnett J. Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. Renewable Energy, 2003, 28(11): 1813–1824
|
38 |
Yang H, Lu L, Zhou W. A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy, 2007, 81(1): 76–84
|
39 |
Yang H, Wei Z, Chengzhi L. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy, 2009, 86(2): 163–169
|
40 |
Ai B, Yang H, Shen H, Liao X. Computer-aided design of PV/wind hybrid system. Renewable Energy, 2003, 28(10): 1491–1512
|
41 |
Diaf S, Diaf D, Belhamel M, Haddadi M, Louche A. A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy, 2007, 35(11): 5708–5718
|
42 |
Hocaoğlu F O, Gerek Ö N, Kurban M. A novel hybrid (wind–photovoltaic) system sizing procedure. Solar Energy, 2009, 83(11): 2019–2028
|
43 |
Chandrasekaran S, Amarkarthik A, Sivakumar K, Selvamuthukumaran D, Sidney S. Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion. Frontiers in Energy, 2013, 7(3): 279–287
|
44 |
Kaur S, Verma Y P, Agrawal S. Optimal generation scheduling in power system using frequency prediction through ANN under ABT environment. Frontiers in Energy, 2013, 7(4): 468–478
|
45 |
Giwa S O, Adekomaya S O, Adama K O, Mukaila M O. Prediction of selected biodiesel fuel properties using artificial neural network. Frontiers in Energy, 2015, 9(4): 433–445
|
46 |
Haykin S. Neural Networks: a Comprehensive Foundation.2nd ed.New York: Pearson Education, 2009
|
47 |
Chapra S C, Canale R C. Numerical Methods for Engineers. 6th ed. New York: McGraw-Hill 2010
|
48 |
Moghaddam M G, Khajeh M. Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles. Food and Nutrition Sciences, 2011, 2(08): 803–808
|
/
〈 | 〉 |