FEATURE ARTICLE

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

  • Matthäa Verena HOLLAND-CUNZ ,
  • Faye CORDING ,
  • Jochen FRIEDL ,
  • Ulrich STIMMING
Expand
  • Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

Received date: 01 Sep 2017

Accepted date: 12 Nov 2017

Published date: 04 Jun 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.

Cite this article

Matthäa Verena HOLLAND-CUNZ , Faye CORDING , Jochen FRIEDL , Ulrich STIMMING . Redox flow batteries—Concepts and chemistries for cost-effective energy storage[J]. Frontiers in Energy, 2018 , 12(2) : 198 -224 . DOI: 10.1007/s11708-018-0552-4

Acknowledgments

This work was supported by Newcastle University and Siemens AG.
1
Yang Z, Zhang J, Kintner-Meyer M C W, Lu X, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid. Chemical Reviews, 2011, 111(5): 3577–3613

DOI PMID

2
Offer G J, Howey D, Contestabile M, Clague R, Brandon N P. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 2010, 38(1): 24–29

DOI

3
Ramachandran S, Stimming U. Well to wheel analysis of low carbon alternatives for road traffic. Energy & Environmental Science, 2015, 8(11): 3313–3324

DOI

4
Scrosati B, Garche J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430

DOI

5
Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657

DOI PMID

6
Vetter K J. Electrochemical Kinetics—Theoretical and Experimental Aspects. English ed. New York/London: Academic Press Inc., 1967

7
Friedl J, Stimming U. The importance of electrochemistry for the development of sustainable mobility. In: Bruhns H, ed. Energ. Forsch. Und Konzepte, Arbeitskreis Energie (AKE) in der Deutschen Physikalischen Gesellschaft, 2014

8
McCreery R L. Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews, 2008, 108(7): 2646–2687

DOI PMID

9
Fischer U, Saliger R, Bock V, Petricevic R, Fricke J. Carbon aerogels as electrode material in supercapacitors. Journal of Porous Materials, 1997, 4(4): 281–285

DOI

10
Barbieri O, Hahn M, Herzog A, Kötz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005, 43(6 ): 1303–1310

DOI

11
Tessonnier J P, Rosenthal D, Hansen T W, Hess C, Schuster M E, Blume R, Girgsdies F, Pfänder N, Timpe O, Su D S. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon, 2009, 47(7): 1779–1798

DOI

12
Béguin F, Presser V, Balducci A, Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 2014, 26(14): 2219–2251

DOI PMID

13
Ruiz V, Blanco C, Raymundo-Piñero E, Khomenko V, Béguin F, Santamaría R. Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochimica Acta, 2007, 52(15): 4969–4973

DOI

14
Marder M P. Condensed Matter Physics. 2nd ed. Hoboken: John Wiley & Sons, Inc., 2010

15
Zeier W G, Janek J. A solid future for battery development. Nature Energy, 2016, 1: 1–4

DOI

16
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12(3): 194–206

DOI PMID

17
Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537

DOI

18
Friedl J, Stimming U. Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochimica Acta, 2013, 101: 41–58

DOI

19
Schmickler W, Santos E. Interfacial Electrochemistry. 2nd ed. Berlin: Springer, 2010

DOI

20
Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie International Edition, 2005, 44(14): 2132–2135

DOI PMID

21
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556

DOI PMID

22
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892

DOI

23
Marshall R J, Walsh F C. A review of some recent electrolytic cell designs. Surface Technology, 1985, 24(1): 45–77

DOI

24
Walsh F C, Pletcher D. Electrochemical engineering and cell design. In: Pletcher D, Tian Z-Q, Williams D (eds.), Developments in Electrochemistry: Science Inspired by Martin Felischmann. Hoboken: John Wiley & Sons, 2014: 95–112

25
Bond M, Henderson T L E, Mann D R, Mann T F, Thormann W, Zoski C G. A fast electron transfer rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum disk ultramicroelectrodes. Analytical Chemistry, 1988, 60(18): 1878–1882

DOI

26
Friedl J, Stimming U. Determining electron transfer kinetics at porous electrodes. Electrochimica Acta, 2017, 227: 235–245

DOI

27
Friedl J, Bauer C M, Rinaldi A, Stimming U. Electron transfer kinetics of the VO2+/VO2+– reaction on multi-walled carbon nanotubes. Carbon, 2013, 63: 228–239

DOI

28
Chalamala B R, Soundappan T, Fisher G R, Anstey M R, Viswanathan V V, Perry M L. Redox flow batteries: an engineering perspective. Proceedings of the IEEE, 2014, 102(6): 976–999

DOI

29
Arenas L F, de León C P, Walsh F C. Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. Journal of Energy Storage, 2017, 11: 119–153

DOI

30
Remick R J, Ang P G, Hearn B E, Kalafut S J, Speckman T W. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system. US Patent 4485154, 1984

31
Skyllas-Kazacos M, Rychcik M, Robins R G, Fan G. New all-vanadium redox flow cell. Journal of the Electrochemical Society, 1986, 133(5): 1057–1058

DOI

32
Lim H S, Lackner A M, Knechtli R C. Zinc-bromine secondary battery. Journal of the Electrochemical Society, 1977, 124(8): 1154–1157

DOI

33
Perry M L, Darling R M, Zaffou R. High power density redox flow battery cells. ECS Transactions, 2013, 53(7): 7–16

DOI

34
Akhil A A, Huff G, Currier A B, Kaun B C, Rastler D M, Chen S B, Cotter A L, Bradshaw D T, Gauntlett W D. DOE / EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA. Sandia National Laboratories, 2013

35
Eckroad S.Vanadium Redox Flow Batteries: an In-Depth Analysis. Palo Alto, CA: Electric Power Research Institute, 2007

36
Livermore L, Labs N, Livermore L, Labs N, Independence E, Curtright A, Apt J, Generation W, Guttromson R. arpa-e GRIDS program overview. 2010, https://arpa-e.energy.gov/sites/default/files/documents/files/GRIDS_ProgramOverview.pdf

37
Zhang M, Moore M, Watson J S, Zawodzinski T A, Counce R M. Capital cost sensitivity analysis of an all-vanadium redox-flow battery. Journal of the Electrochemical Society, 2012, 159(8): A1183–A1188

DOI

38
Viswanathan V, Crawford A, Thaller L, Stephenson D, Kim S, Wang W, Coffey G, Balducci P, Gary Z, Li L, Sprenkle V.Estimation of capital and levelized cost for redox flow batteries. The Electrochemical Society, 2012

39
Noack J, Roznyatovskaya N, Herr T, Fischer P. The chemistry of redox-flow batteries. Angewandte Chemie International Edition, 2015, 54(34): 9776–9809

DOI PMID

40
Pan F, Wang Q. Redox species of redox flow batteries: a review. Molecules, 2015, 20(11): 20499–20517

DOI

41
Weber A Z, Mench M M, Meyers J P, Ross P N, Gostick J T, Liu Q. Redox flow batteries: a review. Journal of Applied Electrochemistry, 2011, 41(10): 1137–1164

DOI

42
Ponce de León C, Friasferrer A, Gonzalezgarcia J, Szanto D, Walsh F. Redox flow cells for energy conversion. Journal of Power Sources, 2006, 160(1): 716–732

DOI

43
Leung P, Shah A A, Sanz L, Flox C, Morante J R, Xu Q, Mohamed M R, Ponce de León C, Walsh F C. Recent developments in organic redox flow batteries: a critical review. Journal of Power Sources, 2017, 360: 243–283

DOI

44
Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B, Yu G. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44(22): 7968–7996

DOI PMID

45
Soloveichik G L. Flow batteries: current status and trends. Chemical Reviews, 2015, 115(20): 11533–11558

DOI PMID

46
Thaller L H. Electrically rechargable redox flow cell. US Patent 3996064, 1976

47
Sum E, Skyllas-Kazacos M. A study of the V (II)/V (III) redox couple for redox flow cell applications. Journal of Power Sources, 1985, 15(2–3): 179–190

DOI

48
Rychcik M, Skyllas-Kazacos S. Evaluation of electrode materials for vanadium redox cell. Journal of Power Sources, 1987, 19(1): 45–54

DOI

49
Hosseiny S S, Saakes M, Wessling M. A polyelectrolyte membrane-based vanadium/air redox flow battery. Electroche-mistry Communications, 2011, 13(8): 751–754

DOI

50
Derr I, Bruns M, Langner J, Fetyan A, Melke J, Roth C. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation. Journal of Power Sources, 2016, 325: 351–359

DOI

51
Miller M A, Bourke A, Quill N, Wainright J S, Lynch R P, Buckley D N, Savinell R F. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency. Journal of the Electrochemical Society, 2016, 163(9): A2095–A2102

DOI

52
Yufit V, Hale B, Matian M, Mazur P, Brandon N P. Development of a regenerative hydrogen-vanadium fuel cell for energy storage applications. Journal of the Electrochemical Society, 2013, 160(6): A856–A861

DOI

53
Tucker M C, Srinivasan V, Ross P N, Weber A Z. Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts. Journal of Applied Electrochemistry, 2013, 43(7): 637–644

DOI

54
Hewa Dewage H, Wu B, Tsoi A, Yufit V, Offer G, Brandon N. A novel regenerative hydrogen cerium fuel cell for energy storage applications. Journal of Materials Chemistry A, 2015, 3(18): 9446–9450

DOI

55
Schweiss R, Pritzl A, Meiser C. Parasitic hydrogen evolution at different carbon fiber electrodes in vanadium redox flow batteries. Journal of the Electrochemical Society, 2016, 163(9): A2089–A2094

DOI

56
Shah A A, Al-Fetlawi H, Walsh F C. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochimica Acta, 2010, 55(3): 1125–1139

DOI

57
Weber J, Samec Z, Marecek V. The effect of anion adsorption on the kinetics of the Fe3+/Fe2+ reacion on Pt and Au electrodes in HClO4. Journal of Electroanalytical Chemistry, 1978, 89(2): 271–288

DOI

58
Jonshagen B, Lex P. The zinc/bromine battery system for utility and remote area applications. Power Engineering Journal, 1999, 13(3): 142–148

DOI

59
Duduta M, Ho B, Wood V C, Limthongkul P, Brunini V E, Carter W C, Chiang Y M. Semi-solid lithium rechargeable flow battery. Advanced Energy Materials, 2011, 1(4): 511–516

DOI

60
Huang Q, Wang Q. Next-generation, high-energy-density redox flow batteries. ChemPlusChem, 2015, 80(2): 312–322

DOI

61
Huang Q, Li H, Grätzel M, Wang Q. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. Physical Chemistry Chemical Physics, 2013, 15(6): 1793–1797

DOI PMID

62
Pan F, Yang J, Huang Q, Wang X, Huang H, Wang Q. Redox targeting of anatase TiO2 for redox flow lithium-Ion batteries. Advanced Energy Materials, 2014, 4(15): 1400567

DOI

63
Zanzola E, Dennison C R, Battistel A, Peljo P, Vrubel H, Amstutz V, Girault H H. Redox solid energy boosters for flow batteries: polyaniline as a case study. Electrochimica Acta, 2017, 235: 664–671

DOI

64
Wang W, Kim S, Chen B, Nie Z, Zhang J, Xia G G, Li L, Yang Z. A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy & Environmental Science, 2011, 4(10): 4068

DOI

65
Izutsu K. Electrochemistry in Nonaqueous Solutions. Weinheim: Wiley-VCH GmbH & Co., 2002

66
Liu Q, Sleightholme A E S, Shinkle A A, Li Y, Thompson L T. Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochemistry Communications, 2009, 11(12): 2312–2315

DOI

67
Sleightholme A E S, Shinkle A A, Liu Q, Li Y, Monroe C W, Thompson L T. Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. Journal of Power Sources, 2011, 196(13): 5742–5745

DOI

68
Matsuda Y, Tanaka K, Okada M, Takasu Y, Morita M, Matsumura-Inoue T. A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte. Journal of Applied Electrochemistry, 1988, 18(6): 909–914

DOI

69
Li Z, Li S, Liu S, Huang K, Fang D, Wang F, Peng S. Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide. Electrochemical and Solid-State Letters, 2011, 14(12): A171–A173

DOI

70
Gong K, Fang Q, Gu S, Li S F Y, Yan Y. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy & Environmental Science, 2015, 8(12): 3515–3530

DOI

71
Zoski C G. Handbook of Electrochemistry. Amsterdam: Elsevier B.V., 2007

72
Wei X, Xu W, Vijayakumar M, Cosimbescu L, Liu T, Sprenkle V, Wang W. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Advanced Materials, 2014, 26(45): 7649–7653

DOI PMID

73
Metzger J O. Lösungsmittelfreie organische synthesen. Angewandte Chemie, 1998, 110(21): 3145–3148

DOI

74
Helmut GREIM. Occupational Toxicants: Critical Data Evaluation for MAK Values and Classfication of Carcinogens, Band 19, The MAK-Collection for Occupational Health and Safety. Part 1: MAK Value Documentations (DFG). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003

75
Toxicology Data Network. U.S. National Library of Medicine. 2017–7, https://toxnet.nlm.nih.gov

76
Ejigu A, Greatorex-Davies P A, Walsh D A. Room temperature ionic liquid electrolytes for redox flow batteries. Electrochemistry Communications, 2015, 54: 55–59

DOI

77
Roth E P, Orendorff C J. How electrolytes influence battery safety. Interface, 2012, 21: 45–50

DOI

78
Friedl J, Markovits E II, Herpich M, Feng G, Kornyshev A A, Stimming U. Interface between an Au(111) surface and an ionic liquid: the influence of water on the double-layer capacitance. ChemElectroChem, 2016, 71: 311–315

DOI

79
O’Mahony A M, Silvester D S, Aldous L, Hardacre C, Compton R G. Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. Journal of Chemical & Engineering Data, 2008, 53(12): 2884–2891

DOI

80
Anderson T M, Iii H D P. Ionic liquid flow batteries. 2015–6, https://www.osti.gov/scitech/biblio/1256242

81
Pratt H D III, Leonard J C, Steele L A M, Staiger C L, Anderson T M. Copper ionic liquids: examining the role of the anion in determining physical and electrochemical properties. Inorganica Chimica Acta, 2013, 396: 78–83

DOI

82
Prifti H, Parasuraman A, Winardi S, Lim T M, Skyllas-Kazacos M. Membranes for redox flow battery applications. Membranes (Basel), 2012, 2(2): 275–306

DOI PMID

83
Maurya S, Shin S H, Kim Y, Moon S H. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Advances, 2015, 5(47): 37206–37230

DOI

84
Tang Z. Characterization techniques and electrolyte separator performance investigation for all vanadium redox flow battery. Dissertation for the Doctoral Degree. Knoxville: University of Tennessee, 2013

85
Mohammadi T, Kazacos M S. Modification of anion-exchange membranes for vanadium redox flow battery applications. Journal of Power Sources, 1996, 63(2): 179–186

DOI

86
Mohammadi T, Skyllas-Kazacos M. Characterisation of novel composite membrane for redox flow battery applications. Journal of Membrane Science, 1995, 98(1–2): 77–87

DOI

87
Mohammadi T, Chieng S C, Skyllas Kazacos M. Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. Journal of Membrane Science, 1997, 133(2): 151–159

DOI

88
Yuan Z, Duan Y, Zhang H, Li X, Zhang H, Vankelecom I. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow battery. Energy & Environmental Science, 2015, 9: 22–24

DOI

89
Janoschka T, Martin N, Martin U, Friebe C, Morgenstern S, Hiller H, Hager M D, Schubert U S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 2015, 527(7576): 78–81

DOI PMID

90
Cathro K, Cedzynska K, Constable D C, Hoobin P M. Selection of quaternary ammonium bromides for use in zinc/bromine cells. Journal of Power Sources, 1986, 18(4): 349–370

DOI

91
Yang H S, Park J H, Ra H W, Jin C S, Yang J H. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery. Journal of Power Sources, 2016, 325: 446–452

DOI

92
Higashi S, Lee S W, Lee J S, Takechi K, Cui Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications, 2016, 7: 11801

DOI PMID

93
Rychcik M, Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery. Journal of Power Sources, 1988, 22(1): 59–67

DOI

94
Ulaganathan M, Aravindan V, Yan Q, Madhavi S, Skyllas-kazacos M, Lim T M. Recent advancements in all-vanadium redox flow batteries. Advanced Materials, 2016, 3: 1500309

DOI

95
Skyllas-Kazacos M. Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell. Journal of the Electrochemical Society, 1996, 143(4): L86

DOI

96
Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Advanced Energy Materials, 2011, 1(3): 394–400

DOI

97
Holland-Cunz M V, Friedl J, Stimming U. Anion effects on the redox kinetics of positive electrolyte of the all-vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2017, in press, https://doi.org//10.1016/j.elechem.2017.10.061

DOI

98
Roe S, Menictas C, Skyllas-Kazacos M. A high energy density vanadium redox flow battery with 3 M vanadium electrolyte. Journal of the Electrochemical Society, 2016, 163(1): A5023–A5028

DOI

99
Skyllas-Kazacos M, Kazacos M. Stabilised electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilised electrolyte solutions. European Patent EP0729648, 1995

100
Lei Y, Liu S Q, Gao C, Liang X X, He Z X, Deng Y H, He Z. Effect of amino acid additives on the positive electrolyte of vanadium redox flow batteries. Journal of the Electrochemical Society, 2013, 160(4): A722–A727

DOI

101
Chang F, Hu C, Liu X, Liu L, Zhang J. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery. Electrochimica Acta, 2012, 60: 334–338

DOI

102
Zhang J, Li L, Nie Z, Chen B, Vijayakumar M, Kim S, Wang W, Schwenzer B, Liu J, Yang Z. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1215–1221

DOI

103
Li S, Huang K, Liu S, Fang D, Wu X, Lu D, Wu T. Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochimica Acta, 2011, 56(16): 5483–5487

DOI

104
Nguyen T D, Whitehead A, Scherer G G, Wai N, Oo M O, Bhattarai A, Chandra G P, Xu Z J. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery. Journal of Power Sources, 2016, 334: 94–103

DOI

105
Shinkle A A, Sleightholme A E S, Thompson L T, Monroe C W. Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1191–1199

DOI

106
Shinkle A A, Sleightholme A E S, Griffith L D, Thompson L T, Monroe C W. Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. Journal of Power Sources, 2012, 206: 490–496

DOI

107
Shinkle A A, Pomaville T J, Sleightholme A E S, Thompson L T, Monroe C W. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. Journal of Power Sources, 2014, 248: 1299–1305

DOI

108
Saraidaridis J D, Bartlett B M, Monroe C W. Spectroelectrochemistry of vanadium acetylacetonate and chromium acetylacetonate for symmetric nonaqueous flow batteries. Journal of the Electrochemical Society, 2016, 163(7): A1239–A1246

DOI

109
Liu Q, Shinkle A A, Li Y, Monroe C W, Thompson L T, Sleightholme A E S. Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochemistry Communications, 2010, 12(11): 1634–1637

DOI

110
Goulet M, Kjeang E. Co-laminar flow cells for electrochemical energy conversion. Journal of Power Sources, 2014, 260: 186–196

DOI

111
Goulet M A, Ibrahim O A, Kim W H J J, Kjeang E. Maximizing the power density of aqueous electrochemical flow cells with in operando deposition. Journal of Power Sources, 2017, 339: 80–85

DOI

112
Ressel S, Laube A, Fischer S, Chica A, Flower T, Struckmann T. Performance of a vanadium redox flow battery with tubular cell design. Journal of Power Sources, 2017, 355: 199–205

DOI

113
Skyllas-Kazacos M. Novel vanadium chloride/polyhalide redox flow battery. Journal of Power Sources, 2003, 124(1): 299–302

DOI

114
Walsh F C C. Electrochemical technology for environmental treatment and clean energy conversion. Pure and Applied Chemistry, 2001, 73(12): 1819–1837

DOI

115
Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK, 2004. http://webarchive.nationalarchives.gov.uk/20100919182219/http://www.ensg.gov.uk/assets/dgdti00055.pdf

116
Li B, Nie Z, Vijayakumar M, Li G, Liu J, Sprenkle V, Wang W. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communications, 2015, 6(1): 6303

DOI PMID

117
Janoschka T, Martin N, Hager M D, Schubert U S. An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system. Angewandte Chemie International Edition, 2016, 55(46): 14427–14430

DOI PMID

118
Winsberg J, Hagemann T, Muench S, Friebe C, Häupler B, Janoschka T, Morgenstern S, Hager M D, Schubert U S. Poly(boron-dipyrromethene)-A redox-active polymer class for polymer redox-flow batteries. Chemistry of Materials, 2016, 28(10): 3401–3405

DOI

119
Pratt H D III, Hudak N S, Fang X, Anderson T M. A polyoxometalate flow battery. Journal of Power Sources, 2013, 236: 259–264

DOI

120
Pratt H D III, Pratt W R, Fang X, Hudak N S, Anderson T M. Mixed-metal, structural, and substitution effects of polyoxometalates on electrochemical behavior in a redox flow battery. Electrochimica Acta, 2014, 138: 210–214

DOI

121
Friedl J, Al-Oweini R, Herpich M, Keita B, Kortz U, Stimming U. Electrochemical studies of tri-manganese substituted keggin polyoxoanions. Electrochimica Acta, 2014, 141: 357–366

DOI

122
Kremleva A, Aparicio P A, Genest A, Rösch N. Quantum chemical modeling of tri-Mn-substituted W-based Keggin polyoxoanions. Electrochimica Acta, 2017, 231: 659–669

DOI

123
Keita B, Nadjo L. New oxometalate-based materials for catalysis and electrocatalysis. Materials Chemistry and Physics, 1989, 22(1–2): 77–103

DOI

124
Christian J B, Smith S P E, Whittingham M S, Abruña H D. Tungsten based electrocatalyst for fuel cell applications. Electrochemistry Communications, 2007, 9(8): 2128–2132

DOI

125
Friedl J, Bauer C, Al-Oweini R, Yu D, Kortz U, Hoster H E, Stimming U. Investigation on polyoxometalates for the application in redox flow batteries. In: 222th ECS Meet., Honolulu, HI, 2012, http://ma.ecsdl.org/content/MA2012-02/51/3551.short

126
Liu Y, Lu S, Wang H, Yang C, Su X, Xiang Y. An aqueous redox flow battery with a Tungsten–Cobalt heteropolyacid as the electrolyte for both the anode and cathode. Advanced Energy Materials, 2017, 7: 2–7

DOI

127
Pope M, Varga G M Jr. Heteropoly blues. I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorganic Chemistry, 1966, 5(7): 1249–1254

DOI

128
Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X, Aspuru-Guzik A, Gordon R G, Aziz M J. A metal-free organic-inorganic aqueous flow battery. Nature, 2014, 505(7482): 195–198

DOI PMID

129
Chen Q, Gerhardt M R, Hartle L, Aziz M J. A quinone-bromide flow battery with 1 W/cm2 power density. Journal of the Electrochemical Society, 2015, 163(1): A5010–A5013

DOI

130
Chen Q, Gerhardt M R, Aziz M J. Dissection of the voltage losses of an acidic quinone redox flow battery. Journal of the Electrochemical Society, 2017, 164(6): A1126–A1132

DOI

131
Chen Q, Eisenach L, Aziz M J. Cycling analysis of a quinone-bromide redox flow battery. Journal of the Electrochemical Society, 2016, 163(1): A5057–A5063

DOI

132
Carney T J, Collins S J, Moore J S, Brushett F R. Concentration-dependent dimerization of anthraquinone disulfonic acid and its impact on charge storage. Chemistry of Materials, 2017, 29(11): 4801–4810

DOI

133
Lin K, Chen Q, Gerhardt M R, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Alkaline quinone flow battery. Science, 2015, 349(6225): 1529–1532

DOI

134
Lin K, Gómez-Bombarelli R, Beh E S, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz M J, Gordon R G. A redox-flow battery with an alloxazine-based organic electrolyte. Nature Energy, 2016, 1(9): 16102

DOI

135
Rabiul Islam F M, Al Mamun K, Amanullah M T O. Smart Energy Grid Design for Island Countries. Cham: Springer, 2017

DOI

136
Johnson D A, Reid M A. Chemical and electrochemical behavior of the Cr(lll)/Cr(ll) half-cell in the iron-chromium redox energy system. Journal of the Electrochemical Society, 1985, 132(5): 1058–1062

DOI

137
Nice A W. NASA redox system development project status. In: 4th Battery and Electrochemical Contractors Conference, Washington, 1981

138
Zhang H. Development and application of high performance VRB technology. In: IFBF 2017 International Flow Battery Forum, Manchester, UK, 2017

139
Scamman D P, Reade G W, Roberts E P L. Numerical modelling of a bromide-polysulphide redox flow battery. Part 1: Modelling approach and validation for a pilot-scale system. Journal of Power Sources, 2009, 189(2): 1220–1230

DOI

140
Morrissey P. Regenesys: a new energy storage technology. International Journal of Ambient Energy, 2000, 21(4): 213–220

DOI

141
Leung P K, Ponce de León C, Walsh F C. An undivided zinc–cerium redox flow battery operating at room temperature (295 K). Electrochemistry Communications, 2011, 13(8): 770–773

DOI

142
Dong Y R, Kaku H, Hanafusa K, Moriuchi K, Shigematsu T. A novel titanium/manganese redox flow battery. ECS Transactions, 2015, 69(18): 59–67

DOI

143
Zeng Y K, Zhao T S, Zhou X L, Wei L, Jiang H R. A low-cost iron-cadmium redox flow battery for large-scale energy storage. Journal of Power Sources, 2016, 330: 55–60

DOI

144
Cheng J, Zhang L, Yang Y S, Wen Y H, Cao G P, Wang X D. Preliminary study of single flow zinc-nickel battery. Electroche-mistry Communications, 2007, 9(11): 2639–2642

DOI

145
Morita M, Tanaka Y, Tanaka K, Matsuda Y T, Matsumura-Inoue T. Matsumura-inoue, electrochemical oxidation of ruthenium and iron complexes at rotating disk electrode in acetonitrile solution. Bulletin of the Chemical Society of Japan, 1988, 61(8): 2711–2714

DOI

146
Chakrabarti M H, Roberts E P L, Bae C, Saleem M. Ruthenium based redox flow battery for solar energy storage. Energy Conversion and Management, 2011, 52(7): 2501–2508

DOI

147
Cappillino P J, Pratt H D, Hudak N S, Tomson N C, Anderson T M, Anstey M R. Application of redox non-innocent ligands to non-aqueous flow battery electrolytes. Advanced Energy Materials, 2014, 4: 2–6

DOI

148
Hwang B, Park M S, Kim K. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. ChemSusChem, 2015, 8(2): 310–314

DOI PMID

149
Zhang D, Lan H, Li Y. The application of a non-aqueous bis(acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery. Journal of Power Sources, 2012, 217: 199–203

DOI

150
Xu Y, Wen Y, Cheng J, Cao G, Yang Y. Study on a single flow acid Cd-chloranil battery. Electrochemistry Communications, 2009, 11(7): 1422–1424

DOI

151
Yang B, Hoober-Burkhardt L, Wang F, Surya Prakash G K, Narayanan S R. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. Journal of the Electrochemical Society, 2014, 161(9): A1371–A1380

DOI

152
Oh S H, Lee C W, Chun D H, Jeon J D, Shim J, Shin K H, Yang J H. A metal-free and all-organic redox flow battery with polythiophene as the electroactive species. Journal of Materials Chemistry A, 2014, 2(47): 19994–19998

DOI

153
Weinberg D R, Gagliardi C J, Hull J F, Murphy C F, Kent C A, Westlake B C, Paul A, Ess D H, McCafferty D G, Meyer T J. Proton-coupled electron transfer. Chemical Reviews, 2012, 112(7): 4016–4093

DOI PMID

154
Dmello R, Milshtein J D, Brushett F R, Smith K C. Cost-driven materials selection criteria for redox flow battery electrolytes. Journal of Power Sources, 2016, 330: 261–272

DOI

155
Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z. Membrane development for vanadium redox flow batteries. ChemSusChem, 2011, 4(10): 1388–1406

DOI PMID

156
Wiedemann E, Heintz A, Lichtenthaler R N. Transport properties of vanadium ions in cation exchange membranes: determination of diffusion coefficients using a dialysis cell. Journal of Membrane Science, 1998, 141(2): 215–221

DOI

157
Ding C, Zhang H, Li X, Liu T, Xing F. Vanadium flow battery for energy storage: prospects and challenges. Journal of Physical Chemistry Letters, 2013, 4(8): 1281–1294

DOI PMID

158
Beh E S, De Porcellinis D, Gracia R L, Xia K T, Gordon R G, Aziz M J. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Letter, 2017, 2(3): 639–644

DOI

159
Vijayakumar M, Bhuvaneswari M S, Nachimuthu P, Schwenzer B, Kim S, Yang Z, Liu J, Graff G L, Thevuthasan S, Hu J. Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries. Journal of Membrane Science, 2011, 366(1–2): 325–334

DOI

160
Derr I, Fetyan A, Schutjajew K, Roth C. Electrochemical analysis of the performance loss in all vanadium redox flow batteries using different cut-off voltages. Electrochimica Acta, 2017, 224: 9–16

DOI

161
Darling R, Gallagher K G, Kowalski J A, Ha S, Brushett F R. Pathways to low-cost electrochemical energy storage: a compa-rison of aqueous and nonaqueous flow batteries. Energy & Environmental Science, 2014, 7(11): 3459–3477

DOI

162
U. S. Department of Energy Headquarters Advanced Research Projects Agency – Energy (ARPA-E). Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS). 2010, https://www.osti.gov/scitech/biblio/1046668

163
Winsberg J, Hagemann T, Janoschka T, Hager M D, Schubert U S. Redox-flow batteries: from metals to organic redox-active materials. Angewandte Chemie International Edition, 2017, 56(3): 686–711

DOI PMID

164
Zeng Y K, Zhao T S, An L, Zhou X L, Wei L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources, 300(2015): 438–443

DOI

Outlines

/