Received date: 06 Jun 2017
Accepted date: 18 Sep 2017
Published date: 08 Mar 2018
Copyright
Composite materials, which consist of organic and inorganic components, are widely used in various fields because of their excellent mechanical properties, resistance to corrosion, low-cost fabrication, etc. Thermal properties of organic/inorganic composites play a crucial role in some applications such as thermal interface materials for micro-electronic packaging, nano-porous materials for sensor development, thermal insulators for aerospace, and high-performance thermoelectric materials for power generation and refrigeration. In the past few years, many studies have been conducted to reveal the physical mechanism of thermal transport in organic/inorganic composite materials in order to stimulate their practical applications. In this paper, the theoretical and experimental progresses in this field are reviewed. Besides, main factors affecting the thermal conductivity of organic/inorganic composites are discussed, including the intrinsic properties of organic matrix and inorganic fillers, topological structure of composites, loading volume fraction, and the interfacial thermal resistance between fillers and organic matrix.
Bin LIU , Lan DONG , Qing XI , Xiangfan XU , Jun ZHOU , Baowen LI . Thermal transport in organic/inorganic composites[J]. Frontiers in Energy, 2018 , 12(1) : 72 -86 . DOI: 10.1007/s11708-018-0526-6
1 |
Song S H, Park K H, Kim B H, Choi Y W, Jun G H, Lee D J, Kong B S, Paik K W, Jeon S. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials, 2013, 25(5): 732–737
|
2 |
Prasher R S, Chang J Y, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C. Nano and micro technology-based next-generation package-level cooling solutions. Intel Technology Journal, 2005, 09(04): 285–296
|
3 |
Felba J. Thermally conductive nanocomposites. In: Felba J. Nano-bio-electronic, Photonic and MEMS Packaging. New York: Springer, Science, 2010
|
4 |
Renteria J, Legedza S, Salgado R, Balandin M P, Ramirez S, Saadah M, Kargar F, Balandin A A. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Materials & Design, 2015, 88: 214–221
|
5 |
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461
|
6 |
Zhang B, Sun J, Katz H E, Fang F, Opila R L. Promising thermoelectric properties of commercial PEDOT: PSS materials and their bi2Te3 powder composites. ACS Applied Materials & Interfaces, 2010, 2(11): 3170–3178
|
7 |
See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Letters, 2010, 10(11): 4664–4667
|
8 |
Wang Y, Zhang S M, Deng Y. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(9): 3554–3559
|
9 |
Hong C T, Lee W, Kang Y H, Yoo Y, Ryu J, Cho S Y, Jang K S. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(23): 12314–12319
|
10 |
Zhou C, Dun C, Wang Q, Wang K, Shi Z, Carroll D L, Liu G, Qiao G. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Applied Materials & Interfaces, 2015, 7(38): 21015–21020
|
11 |
Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Materials, 2015, 14(6): 622–627
|
12 |
Wang H, Hsu J H, Yi S I, Kim S L, Choi K, Yang G, Yu C. Thermally driven large n-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Advanced Materials, 2015, 27(43): 6855–6861
|
13 |
Sun Y, Qiu L, Tang L, Geng H, Wang H, Zhang F, Huang D, Xu W, Yue P, Guan Y S, Jiao F, Sun Y, Tang D, Di C A, Yi Y, Zhu D. Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Advanced Materials, 2016, 28(17): 3351–3358
|
14 |
Liu Y, Song Z, Zhang Q, Zhou Z, Tang Y, Wang L, Zhu J, Luo W, Jiang W. Preparation of bulk AgNWs/PEDOT: PSS composites: a new model towards high-performance bulk organic thermoelectric materials. RSC Advances, 2015, 5(56): 45106–45112
|
15 |
Chen Y, He M, Liu B, Bazan G C, Zhou J, Liang Z. Bendable n-type metallic nanocomposites with large thermoelectric power factor. Advanced Materials, 2017, 29(4): 1604752
|
16 |
Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D, Ren Z, Fleurial J, Gogna P. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053
|
17 |
Zhou J, Li X, Chen G, Yang R G. Semiclassical model for thermoelectric transport in nanocomposites. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(11): 115308
|
18 |
Goyala V, Balandinb A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113
|
19 |
Gojny F H, Wichmann M H G, Fiedler B, Kinloch I A, Bauhofer W, Windle A H, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47(6): 2036–2045
|
20 |
Haggenmueller R, Guthy C, Lukes J R, Fischer J E, Winey K I. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules, 2007, 40(7): 2417–2421
|
21 |
Min C, Yu D, Cao J, Wang G, Feng L. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon, 2013, 55: 116–125
|
22 |
Hung M T, Choi O, Ju Y S, Hahn H T. Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Applied Physics Letters, 2006, 89(2): 023117
|
23 |
Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites. Part A, Applied Science and Manufacturing, 2009, 40(6–7): 830–836
|
24 |
He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Composites Science and Technology, 2007, 67(11–12): 2493–2499
|
25 |
Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Letters, 2013, 13(2): 550–554
|
26 |
Zeng J L, Cao Z, Yang D W, Sun L X, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389
|
27 |
Wang W, Yang X, Fang Y, Ding J, Yan J. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Applied Energy, 2009, 86(7–8): 1196–1200
|
28 |
Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Applied Materials & Interfaces, 2011, 3(11): 4396–4403
|
29 |
Manchado M A L, Valentini L, Biagiotti J, Kenny J M. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon, 2005, 43(7): 1499–1505
|
30 |
Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science, 2011, 36(7): 914–944
|
31 |
Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters, 2012, 12(2): 861–867
|
32 |
Shenogina N, Shenogin S, Xue L, Keblinski P. On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters, 2005, 87(13): 133106
|
33 |
Shi J, Ger M, Liu Y, Fan Y, Wen N, Lin C, Pu N. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon, 2013, 51: 365–372
|
34 |
Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M E, Haddon R C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Advanced Materials, 2008, 20(24): 4740–4744
|
35 |
Huxtable S T, Cahill D G, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M S, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2(11): 731–734
|
36 |
Foygel M, Morris R D, Anez D, French S, Sobolev V L. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(10): 104201
|
37 |
Coleman J N, Curran S, Dalton A B, Davey A P, McCarthy B, Blau W, Barklie R C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B: Condensed Matter and Materials Physics, 1998, 58(12): R7492–R7495
|
38 |
Wang L, Dang Z. Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 2005, 87(4): 042903
|
39 |
Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics, 1973, 45(4): 574–588
|
40 |
Nakayama T, Yakubo K, Orbach R L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Reviews of Modern Physics, 1994, 66(2): 381–443
|
41 |
Balberg I, Anderson C H, Alexander S, Wagner N. Excluded volume and its relation to the onset of percolation. Physical Review B: Condensed Matter and Materials Physics, 1984, 30(7): 3933–3943
|
42 |
Tian W, Yang R. Phonon transport and thermal conductivity percolation in random nanoparticle composites. Computer Modeling in Engineering & Sciences, 2008, 24: 123–141
|
43 |
Zheng R, Gao J, Wang J, Feng S P, Ohtani H, Wang J, Chen G. Thermal percolation in stable graphite suspensions. Nano Letters, 2012, 12(1): 188–192
|
44 |
Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau W J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics, 2002, 92(7): 4024–4030
|
45 |
Last B J, Thouless D J. Percolation theory and electrical conductivity. Physical Review Letters, 1971, 27(25): 1719–1721
|
46 |
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286
|
47 |
Veca M L, Meziani M J, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell J W, Sun Y. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Advanced Materials, 2009, 21(20): 2088–2092
|
48 |
Jang W, Chen Z, Bao W, Lau C N, Dames C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Letters, 2010, 10(10): 3909–3913
|
49 |
Yu A, Ramesh P, Itkis M E, Bekyarova E, Haddon R C. Graphite nanoplatelet-epoxy composite thermal interface materials. Journal of Physical Chemistry C, 2007, 111(21): 7565–7569
|
50 |
Tian X, Itkis M E, Bekyarova E B, Haddon R C. Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Scientific Reports, 2013, 3(1): 1710
|
51 |
Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polymer Composites, 2014, 35: 1087–1092
|
52 |
Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L. Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Composites Science and Technology, 2015, 109: 25–31
|
53 |
Ding P, Su S, Song N, Tang S, Liu Y, Shi L. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon, 2014, 66: 576–584
|
54 |
Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials, 2015, 27(6): 2100–2106
|
55 |
Shtein M, Nadiv R, Buzaglo M, Regev O. Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Applied Materials & Interfaces, 2015, 7(42): 23725–23730
|
56 |
Guo W, Chen G. Fabrication of graphene/epoxy resin composites with much enhanced thermal conductivity via ball milling technique. Journal of Applied Polymer Science, 2014, 131(15): 40565
|
57 |
Eksik O, Bartolucci S F, Gupta T, Fard H, Borca-Tasciuc T, Koratkar N. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives. Carbon, 2016, 101: 239–244
|
58 |
Ma L, Wang J, Marconnet A M, Barbati A C, McKinley G H, Liu W, Chen G. Viscosity and thermal conductivity of stable graphite suspensions near percolation. Nano Letters, 2015, 15(1): 127–133
|
59 |
Swartz E T, Pohl R O. Thermal boundary resistance. Reviews of Modern Physics, 1989, 61(3): 605–668
|
60 |
Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D L, Novoselov K S, Balandin A A. Thermal conductivity of graphene laminate. Nano Letters, 2014, 14(9): 5155–5161
|
61 |
Kumar P, Shahzad F, Yu S, Hong S M, Kim Y, Koo C M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 2015, 94: 494–500
|
62 |
Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Koo C M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon, 2016, 101: 120–128
|
63 |
Kim H S, Bae H S, Yu J, Kim S Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports, 2016, 6(1): 26825
|
64 |
Lin C, Chung D D L. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon, 2009, 47(1): 295–305
|
65 |
Chatterjee S, Nafezarefi F, Tai N H, Schlagenhauf L, Nüesch F A, Chu B T T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 2012, 50(15): 5380–5386
|
66 |
Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y, Mishra A K, Liu L. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chemistry of Materials, 2014, 26(15): 4459–4465
|
67 |
De Volder M F, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539
|
68 |
Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339(6116): 182–186
|
69 |
Marconnet A M, Yamamoto N, Panzer M A, Wardle B L, Goodson K E. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano, 2011, 5(6): 4818–4825
|
70 |
Lizundia E, Oleaga A, Salazar A, Sarasua J R. Nano- and microstructural effects on thermal properties of poly(L-lactide)/multi-wall carbon nanotube composites. Polymer, 2012, 53(12): 2412–2421
|
71 |
Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai Y. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon, 2011, 49(2): 495–500
|
72 |
Rahmat M, Hubert P. Carbon nanotube–polymer interactions in nanocomposites: a review. Composites Science and Technology, 2011, 72(1): 72–84
|
73 |
Yu W, Fu J, Chen L, Zong P, Yin J, Shang D, Lu Q, Chen H, Shi L. Enhanced thermal conductive property of epoxy composites by low mass fraction of organic-inorganic multilayer covalently grafted carbon nanotubes. Composites Science and Technology, 2016, 125: 90–99
|
74 |
Zhao J, Du F, Cui W, Zhu P, Zhou X, Xie X. Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multi-walled carbon nanotube composites. Composites Part A, Applied Science and Manufacturing, 2014, 58: 1–6
|
75 |
Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin A A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano, 2013, 7(6): 5114–5121
|
76 |
Bonnet P, Sireude D, Garnier B, Chauvet O. Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters, 2007, 91(20): 201910
|
77 |
Kapadia R S, Louie B M, Bandaru P R. The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube-polymer composites. Journal of Heat Transfer, 2013, 136(1): 011303
|
78 |
Lu C, Mai Y W. Anomalous electrical conductivity and percolation in carbon nanotube composites. Journal of Materials Science, 2008, 43(17): 6012–6015
|
79 |
Sato K, Ijuin A, Hotta Y. Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceramics International, 2015, 41(8): 10314–10318
|
80 |
Zhou W, Yu D. Thermal and dielectric properties of the aluminum particle/epoxy resin composites. Journal of Applied Polymer Science, 2010, 118(6): 3156–3166
|
81 |
Balachander N, Seshadri I, Mehta R J, Schadler L S, Borca-Tasciuc T, Keblinski P, Ramanath G. Nanowire-filled polymer composites with ultrahigh thermal conductivity. Applied Physics Letters, 2013, 102(9): 093117
|
82 |
Zeng J L, Cao Z, Yang D W, Sun L, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389
|
83 |
Xu J, Munari A, Dalton E, Mathewson A, Razeeb K M. Silver nanowire array-polymer composite as thermal interface material. Journal of Applied Physics, 2009, 106(12): 124310
|
84 |
Zhu D, Yu W, Du H, Chen L, Li Y, Xie H.Thermal conductivity of composite materials containing copper nanowires. Journal of Nanomaterials, 2016, 3089716
|
85 |
Wang S, Cheng Y, Wang R, Sun J, Gao L. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Applied Materials & Interfaces, 2014, 6(9): 6481–6486
|
86 |
Nikkeshi S, Kudo M, Masuko T. Dynamic viscoelastic properties and thermal properties of Ni powder–epoxy resin composites. Journal of Applied Polymer Science, 1998, 69(13): 2593–2598
|
87 |
Szostak M, Andezejewski J. Thermal properties of polymer-metal composites. Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers, 2014
|
88 |
Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1–2): 155–165
|
89 |
Choi S, Kim J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Composites Part B, Engineering, 2013, 51: 140–147
|
90 |
Gu J, Liang C, Dang J, Dong W, Zhang Q. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Advances, 2016, 6(42): 35809–35814
|
91 |
Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceramics International, 2014, 40(1): 2047–2056
|
92 |
Yu W, Wang M, Xie H, Hu Y, Chen L. Silicon carbide nanowires suspensions with high thermal transport properties. Applied Thermal Engineering, 2016, 94: 350–354
|
93 |
Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica Acta, 1998, 320(1–2): 177–186
|
94 |
Bujard P. Thermal conductivity of boron nitride filled epoxy resins: temperature dependence and influence of sample preparation. Conference on Thermal Phenomena in the Fabrication & Operation of Electronic Components: I-therm, 1988, 41–49
|
95 |
Yung K C, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. Journal of Applied Polymer Science, 2007, 106(6): 3587–3591
|
96 |
Li T L, Hsu S L. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. Journal of Physical Chemistry B, 2010, 114(20): 6825–6829
|
97 |
Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Advanced Functional Materials, 2013, 23(14): 1824–1831
|
98 |
Lin Z, Liu Y, Raghavan S, Moon K S, Sitaraman S K, Wong C P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Applied Materials & Interfaces, 2013, 5(15): 7633–7640
|
99 |
Takahashi F, Ito K, Morikawa J, Hashimoto T, Hatta I. Characterization of heat conduction in a polymer film. Japanese Journal of Applied Physics, 2004, 43(10): 7200–7204
|
100 |
Yuan C, Duan B, Li L, Xie B, Huang M, Luo X. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Applied Materials & Interfaces, 2015, 7(23): 13000–13006
|
101 |
Goyal V, Balandin A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113
|
102 |
Zhou T, Wang X, Liu X, Xiong D. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 2010, 48(4): 1171–1176
|
103 |
Lee G W, Park M, Kim J, Lee J I, Yoon H G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A, Applied Science and Manufacturing, 2006, 37(5): 727–734
|
104 |
Fang L, Wu C, Qian R, Xie L, Yang K, Jiang P. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. RSC Advances, 2014, 4(40): 21010–21017
|
105 |
Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong C P. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Scientific Reports, 2016, 6(1): 19394
|
106 |
Garnett J C M. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1904, 203(359–-371): 385–420
|
107 |
Bruggeman D A G. Calculation of different physical constants of heterogeneous substances, I. dielectric constants and conductances of mixers of isotropic substances. Annalen der Physik. Leipzig, 1935, 24: 636–679 (in German)
|
108 |
Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191
|
109 |
Jeffrey D J. Conduction through a random suspension of spheres. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1973, 335: 355–367
|
110 |
Bonnecaze R T, Brady J F. The effective conductivity of random suspensions of spherical particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1991, 432: 445–465
|
111 |
Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1990, 430: 285–313
|
112 |
Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research, 2003, 5(1/2): 167–171
|
113 |
Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport. Materials Today, 2005, 8(6): 36–44
|
114 |
Patel H E, Das S K, Sundararajan T, Nair A S, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Applied Physics Letters, 2003, 83(14): 2931–2933
|
115 |
Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 2001, 79(14): 2252–2254
|
116 |
Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 2001, 78(6): 718–720
|
117 |
Keblinski P, Phillpot S R, Choi S U S, Eastman J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 2002, 45(4): 855–863
|
118 |
Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T, Das S K. Model for heat conduction in nanofluids. Physical Review Letters, 2004, 93(14): 144301
|
119 |
Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE Journal, 2003, 49(4): 1038–1043
|
120 |
Kapitza P L. Heat transfer and superfluidity of helium II. Physical Review, 1941, 20: 354–355
|
121 |
Hu L, Desai T, Keblinski P. Determination of interfacial thermal resistance at the nanoscale. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(19): 195423
|
122 |
Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials, 1987, 21(6): 508–515
|
123 |
Benveniste Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. Journal of Applied Physics, 1987, 61(8): 2840–2843
|
124 |
Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81(10): 6692–6699
|
125 |
Nan C W, Liu G, Lin Y, Li M. Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 2004, 85(16): 3549–3551
|
126 |
Ordonez-Miranda J, Yang R. Effect of a metallic coating on the thermal conductivity of carbon nanofiber–dielectric matrix composites. Composites Science and Technology, 2015, 109: 18–24
|
127 |
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A model for the effective thermal conductivity of metal-nonmetal particulate composites. Journal of Applied Physics, 2012, 111(4): 044319
|
128 |
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. Journal of Applied Physics, 2013, 114(6): 064306
|
129 |
Minnich A, Chen G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Applied Physics Letters, 2007, 91(7): 073105
|
130 |
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. On the thermal conductivity of particulate nanocomposites. Applied Physics Letters, 2011, 98(23): 233111
|
131 |
Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Materials, 2014, 14(3): 295–300
|
132 |
Agari Y, Ueda A, Tanaka M, Nagai S. Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content. Journal of Applied Polymer Science, 1990, 40(56): 929–941
|
133 |
Wang B, Zhou L, Peng X. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer, 2003, 46(14): 2665–2672
|
134 |
Yu K W. Effective nonlinear response of fractal clusters. Physical Review B: Condensed Matter, 1994, 49(14): 9989–9992
|
135 |
Devpura A, Phelan P E, Prasher R S. Size effects on the thermal conductivity of polymers laden with highly conductive filler particles. Microscale Thermophysical Engineering, 2001, 5(3): 177–189
|
136 |
Duong H M, Papavassiliou D V, Lee L L, Mullen K J. Random walks in nanotube composites: improved algorithms and the role of thermal boundary resistance. Applied Physics Letters, 2005, 87(1): 013101
|
137 |
Singh I V, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 2007, 46(9): 842–847
|
138 |
Duong H M, Yamamoto N, Papavassiliou D V, Maruyama S, Wardle B L. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites. Nanotechnology, 2009, 20(15): 155702
|
139 |
Kumar S, Alam M A, Murthy J Y. Effect of percolation on thermal transport in nanotube composites. Applied Physics Letters, 2007, 90(10): 104105
|
140 |
Kumar S, Murthy J Y, Alam M A. Percolating conduction in finite nanotube networks. Physical Review Letters, 2005, 95(6): 066802
|
141 |
Tian W, Yang R. Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Applied Physics Letters, 2007, 90(26): 263105
|
/
〈 | 〉 |