REVIEW ARTICLE

Thermal transport in organic/inorganic composites

  • Bin LIU 1 ,
  • Lan DONG 1 ,
  • Qing XI 1 ,
  • Xiangfan XU 1 ,
  • Jun ZHOU 1 ,
  • Baowen LI , 2
Expand
  • 1. Center for Phononics and Thermal Energy Science; China-EU Joint Center for Nanophononics; Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2. Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA

Received date: 06 Jun 2017

Accepted date: 18 Sep 2017

Published date: 08 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Composite materials, which consist of organic and inorganic components, are widely used in various fields because of their excellent mechanical properties, resistance to corrosion, low-cost fabrication, etc. Thermal properties of organic/inorganic composites play a crucial role in some applications such as thermal interface materials for micro-electronic packaging, nano-porous materials for sensor development, thermal insulators for aerospace, and high-performance thermoelectric materials for power generation and refrigeration. In the past few years, many studies have been conducted to reveal the physical mechanism of thermal transport in organic/inorganic composite materials in order to stimulate their practical applications. In this paper, the theoretical and experimental progresses in this field are reviewed. Besides, main factors affecting the thermal conductivity of organic/inorganic composites are discussed, including the intrinsic properties of organic matrix and inorganic fillers, topological structure of composites, loading volume fraction, and the interfacial thermal resistance between fillers and organic matrix.

Cite this article

Bin LIU , Lan DONG , Qing XI , Xiangfan XU , Jun ZHOU , Baowen LI . Thermal transport in organic/inorganic composites[J]. Frontiers in Energy, 2018 , 12(1) : 72 -86 . DOI: 10.1007/s11708-018-0526-6

Acknowledgments

The work is supported by the National Key Research & Development Program of China (Grant No. 2017YFB0406000), the program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. TP2014012), and the Shanghai Committee of Science and Technology (Grant No. 17ZR1447900).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11708-018-0526-6 and is accessible for authorized users.
1
Song S H, Park K H, Kim B H, Choi Y W, Jun G H, Lee D J, Kong B S, Paik K W, Jeon S. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials, 2013, 25(5): 732–737

DOI PMID

2
Prasher R S, Chang J Y, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C. Nano and micro technology-based next-generation package-level cooling solutions. Intel Technology Journal, 2005, 09(04): 285–296

DOI

3
Felba J. Thermally conductive nanocomposites. In: Felba J. Nano-bio-electronic, Photonic and MEMS Packaging. New York: Springer, Science, 2010

4
Renteria J, Legedza S, Salgado R, Balandin M P, Ramirez S, Saadah M, Kargar F, Balandin A A. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Materials & Design, 2015, 88: 214–221

DOI

5
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461

DOI PMID

6
Zhang B, Sun J, Katz H E, Fang F, Opila R L. Promising thermoelectric properties of commercial PEDOT: PSS materials and their bi2Te3 powder composites. ACS Applied Materials & Interfaces, 2010, 2(11): 3170–3178

DOI PMID

7
See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Letters, 2010, 10(11): 4664–4667

DOI PMID

8
Wang Y, Zhang S M, Deng Y. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(9): 3554–3559

DOI

9
Hong C T, Lee W, Kang Y H, Yoo Y, Ryu J, Cho S Y, Jang K S. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(23): 12314–12319

DOI

10
Zhou C, Dun C, Wang Q, Wang K, Shi Z, Carroll D L, Liu G, Qiao G. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Applied Materials & Interfaces, 2015, 7(38): 21015–21020

DOI PMID

11
Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Materials, 2015, 14(6): 622–627

DOI PMID

12
Wang H, Hsu J H, Yi S I, Kim S L, Choi K, Yang G, Yu C. Thermally driven large n-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Advanced Materials, 2015, 27(43): 6855–6861

DOI PMID

13
Sun Y, Qiu L, Tang L, Geng H, Wang H, Zhang F, Huang D, Xu W, Yue P, Guan Y S, Jiao F, Sun Y, Tang D, Di C A, Yi Y, Zhu D. Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Advanced Materials, 2016, 28(17): 3351–3358

DOI PMID

14
Liu Y, Song Z, Zhang Q, Zhou Z, Tang Y, Wang L, Zhu J, Luo W, Jiang W. Preparation of bulk AgNWs/PEDOT: PSS composites: a new model towards high-performance bulk organic thermoelectric materials. RSC Advances, 2015, 5(56): 45106–45112

DOI

15
Chen Y, He M, Liu B, Bazan G C, Zhou J, Liang Z. Bendable n-type metallic nanocomposites with large thermoelectric power factor. Advanced Materials, 2017, 29(4): 1604752

DOI PMID

16
Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D, Ren Z, Fleurial J, Gogna P. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053

DOI

17
Zhou J, Li X, Chen G, Yang R G. Semiclassical model for thermoelectric transport in nanocomposites. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(11): 115308

DOI

18
Goyala V, Balandinb A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113

DOI

19
Gojny F H, Wichmann M H G, Fiedler B, Kinloch I A, Bauhofer W, Windle A H, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47(6): 2036–2045

DOI

20
Haggenmueller R, Guthy C, Lukes J R, Fischer J E, Winey K I. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules, 2007, 40(7): 2417–2421

DOI

21
Min C, Yu D, Cao J, Wang G, Feng L. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon, 2013, 55: 116–125

DOI

22
Hung M T, Choi O, Ju Y S, Hahn H T. Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Applied Physics Letters, 2006, 89(2): 023117

DOI

23
Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites. Part A, Applied Science and Manufacturing, 2009, 40(6–7): 830–836

DOI

24
He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Composites Science and Technology, 2007, 67(11–12): 2493–2499

DOI

25
Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Letters, 2013, 13(2): 550–554

DOI PMID

26
Zeng J L, Cao Z, Yang D W, Sun L X, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389

DOI

27
Wang W, Yang X, Fang Y, Ding J, Yan J. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Applied Energy, 2009, 86(7–8): 1196–1200

DOI

28
Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Applied Materials & Interfaces, 2011, 3(11): 4396–4403

DOI PMID

29
Manchado M A L, Valentini L, Biagiotti J, Kenny J M. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon, 2005, 43(7): 1499–1505

DOI

30
Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science, 2011, 36(7): 914–944

DOI

31
Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters, 2012, 12(2): 861–867

DOI PMID

32
Shenogina N, Shenogin S, Xue L, Keblinski P. On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters, 2005, 87(13): 133106

DOI

33
Shi J, Ger M, Liu Y, Fan Y, Wen N, Lin C, Pu N. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon, 2013, 51: 365–372

DOI

34
Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M E, Haddon R C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Advanced Materials, 2008, 20(24): 4740–4744

DOI

35
Huxtable S T, Cahill D G, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M S, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2(11): 731–734

DOI PMID

36
Foygel M, Morris R D, Anez D, French S, Sobolev V L. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(10): 104201

DOI

37
Coleman J N, Curran S, Dalton A B, Davey A P, McCarthy B, Blau W, Barklie R C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B: Condensed Matter and Materials Physics, 1998, 58(12): R7492–R7495

DOI

38
Wang L, Dang Z. Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 2005, 87(4): 042903

DOI

39
Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics, 1973, 45(4): 574–588

DOI

40
Nakayama T, Yakubo K, Orbach R L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Reviews of Modern Physics, 1994, 66(2): 381–443

DOI

41
Balberg I, Anderson C H, Alexander S, Wagner N. Excluded volume and its relation to the onset of percolation. Physical Review B: Condensed Matter and Materials Physics, 1984, 30(7): 3933–3943

DOI

42
Tian W, Yang R. Phonon transport and thermal conductivity percolation in random nanoparticle composites. Computer Modeling in Engineering & Sciences, 2008, 24: 123–141

43
Zheng R, Gao J, Wang J, Feng S P, Ohtani H, Wang J, Chen G. Thermal percolation in stable graphite suspensions. Nano Letters, 2012, 12(1): 188–192

DOI PMID

44
Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau W J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics, 2002, 92(7): 4024–4030

DOI

45
Last B J, Thouless D J. Percolation theory and electrical conductivity. Physical Review Letters, 1971, 27(25): 1719–1721

DOI

46
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286

DOI PMID

47
Veca M L, Meziani M J, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell J W, Sun Y. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Advanced Materials, 2009, 21(20): 2088–2092

DOI

48
Jang W, Chen Z, Bao W, Lau C N, Dames C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Letters, 2010, 10(10): 3909–3913

DOI PMID

49
Yu A, Ramesh P, Itkis M E, Bekyarova E, Haddon R C. Graphite nanoplatelet-epoxy composite thermal interface materials. Journal of Physical Chemistry C, 2007, 111(21): 7565–7569

DOI

50
Tian X, Itkis M E, Bekyarova E B, Haddon R C. Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Scientific Reports, 2013, 3(1): 1710

DOI

51
Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polymer Composites, 2014, 35: 1087–1092

52
Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L. Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Composites Science and Technology, 2015, 109: 25–31

DOI

53
Ding P, Su S, Song N, Tang S, Liu Y, Shi L. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon, 2014, 66: 576–584

DOI

54
Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials, 2015, 27(6): 2100–2106

DOI

55
Shtein M, Nadiv R, Buzaglo M, Regev O. Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Applied Materials & Interfaces, 2015, 7(42): 23725–23730

DOI PMID

56
Guo W, Chen G. Fabrication of graphene/epoxy resin composites with much enhanced thermal conductivity via ball milling technique. Journal of Applied Polymer Science, 2014, 131(15): 40565

DOI

57
Eksik O, Bartolucci S F, Gupta T, Fard H, Borca-Tasciuc T, Koratkar N. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives. Carbon, 2016, 101: 239–244

DOI

58
Ma L, Wang J, Marconnet A M, Barbati A C, McKinley G H, Liu W, Chen G. Viscosity and thermal conductivity of stable graphite suspensions near percolation. Nano Letters, 2015, 15(1): 127–133

DOI PMID

59
Swartz E T, Pohl R O. Thermal boundary resistance. Reviews of Modern Physics, 1989, 61(3): 605–668

DOI

60
Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D L, Novoselov K S, Balandin A A. Thermal conductivity of graphene laminate. Nano Letters, 2014, 14(9): 5155–5161

DOI PMID

61
Kumar P, Shahzad F, Yu S, Hong S M, Kim Y, Koo C M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 2015, 94: 494–500

DOI

62
Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Koo C M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon, 2016, 101: 120–128

DOI

63
Kim H S, Bae H S, Yu J, Kim S Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports, 2016, 6(1): 26825

DOI PMID

64
Lin C, Chung D D L. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon, 2009, 47(1): 295–305

DOI

65
Chatterjee S, Nafezarefi F, Tai N H, Schlagenhauf L, Nüesch F A, Chu B T T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 2012, 50(15): 5380–5386

DOI

66
Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y, Mishra A K, Liu L. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chemistry of Materials, 2014, 26(15): 4459–4465

DOI

67
De Volder M F, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539

DOI PMID

68
Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339(6116): 182–186

DOI PMID

69
Marconnet A M, Yamamoto N, Panzer M A, Wardle B L, Goodson K E. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano, 2011, 5(6): 4818–4825

DOI PMID

70
Lizundia E, Oleaga A, Salazar A, Sarasua J R. Nano- and microstructural effects on thermal properties of poly(L-lactide)/multi-wall carbon nanotube composites. Polymer, 2012, 53(12): 2412–2421

DOI

71
Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai Y. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon, 2011, 49(2): 495–500

DOI

72
Rahmat M, Hubert P. Carbon nanotube–polymer interactions in nanocomposites: a review. Composites Science and Technology, 2011, 72(1): 72–84

DOI

73
Yu W, Fu J, Chen L, Zong P, Yin J, Shang D, Lu Q, Chen H, Shi L. Enhanced thermal conductive property of epoxy composites by low mass fraction of organic-inorganic multilayer covalently grafted carbon nanotubes. Composites Science and Technology, 2016, 125: 90–99

DOI

74
Zhao J, Du F, Cui W, Zhu P, Zhou X, Xie X. Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multi-walled carbon nanotube composites. Composites Part A, Applied Science and Manufacturing, 2014, 58: 1–6

DOI

75
Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin A A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano, 2013, 7(6): 5114–5121

DOI PMID

76
Bonnet P, Sireude D, Garnier B, Chauvet O. Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters, 2007, 91(20): 201910

DOI

77
Kapadia R S, Louie B M, Bandaru P R. The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube-polymer composites. Journal of Heat Transfer, 2013, 136(1): 011303

DOI

78
Lu C, Mai Y W. Anomalous electrical conductivity and percolation in carbon nanotube composites. Journal of Materials Science, 2008, 43(17): 6012–6015

DOI

79
Sato K, Ijuin A, Hotta Y. Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceramics International, 2015, 41(8): 10314–10318

DOI

80
Zhou W, Yu D. Thermal and dielectric properties of the aluminum particle/epoxy resin composites. Journal of Applied Polymer Science, 2010, 118(6): 3156–3166

DOI

81
Balachander N, Seshadri I, Mehta R J, Schadler L S, Borca-Tasciuc T, Keblinski P, Ramanath G. Nanowire-filled polymer composites with ultrahigh thermal conductivity. Applied Physics Letters, 2013, 102(9): 093117

DOI

82
Zeng J L, Cao Z, Yang D W, Sun L, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389

DOI

83
Xu J, Munari A, Dalton E, Mathewson A, Razeeb K M. Silver nanowire array-polymer composite as thermal interface material. Journal of Applied Physics, 2009, 106(12): 124310

DOI

84
Zhu D, Yu W, Du H, Chen L, Li Y, Xie H.Thermal conductivity of composite materials containing copper nanowires. Journal of Nanomaterials, 2016, 3089716

85
Wang S, Cheng Y, Wang R, Sun J, Gao L. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Applied Materials & Interfaces, 2014, 6(9): 6481–6486

DOI PMID

86
Nikkeshi S, Kudo M, Masuko T. Dynamic viscoelastic properties and thermal properties of Ni powder–epoxy resin composites. Journal of Applied Polymer Science, 1998, 69(13): 2593–2598

DOI

87
Szostak M, Andezejewski J. Thermal properties of polymer-metal composites. Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers, 2014

88
Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1–2): 155–165

DOI

89
Choi S, Kim J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Composites Part B, Engineering, 2013, 51: 140–147

DOI

90
Gu J, Liang C, Dang J, Dong W, Zhang Q. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Advances, 2016, 6(42): 35809–35814

DOI

91
Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceramics International, 2014, 40(1): 2047–2056

DOI

92
Yu W, Wang M, Xie H, Hu Y, Chen L. Silicon carbide nanowires suspensions with high thermal transport properties. Applied Thermal Engineering, 2016, 94: 350–354

DOI

93
Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica Acta, 1998, 320(1–2): 177–186

DOI

94
Bujard P. Thermal conductivity of boron nitride filled epoxy resins: temperature dependence and influence of sample preparation. Conference on Thermal Phenomena in the Fabrication & Operation of Electronic Components: I-therm, 1988, 41–49

95
Yung K C, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. Journal of Applied Polymer Science, 2007, 106(6): 3587–3591

DOI

96
Li T L, Hsu S L. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. Journal of Physical Chemistry B, 2010, 114(20): 6825–6829

DOI PMID

97
Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Advanced Functional Materials, 2013, 23(14): 1824–1831

DOI

98
Lin Z, Liu Y, Raghavan S, Moon K S, Sitaraman S K, Wong C P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Applied Materials & Interfaces, 2013, 5(15): 7633–7640

DOI PMID

99
Takahashi F, Ito K, Morikawa J, Hashimoto T, Hatta I. Characterization of heat conduction in a polymer film. Japanese Journal of Applied Physics, 2004, 43(10): 7200–7204

DOI

100
Yuan C, Duan B, Li L, Xie B, Huang M, Luo X. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Applied Materials & Interfaces, 2015, 7(23): 13000–13006

DOI PMID

101
Goyal V, Balandin A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113

DOI

102
Zhou T, Wang X, Liu X, Xiong D. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 2010, 48(4): 1171–1176

DOI

103
Lee G W, Park M, Kim J, Lee J I, Yoon H G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A, Applied Science and Manufacturing, 2006, 37(5): 727–734

DOI

104
Fang L, Wu C, Qian R, Xie L, Yang K, Jiang P. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. RSC Advances, 2014, 4(40): 21010–21017

DOI

105
Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong C P. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Scientific Reports, 2016, 6(1): 19394

DOI PMID

106
Garnett J C M. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1904, 203(359–-371): 385–420

DOI

107
Bruggeman D A G. Calculation of different physical constants of heterogeneous substances, I. dielectric constants and conductances of mixers of isotropic substances. Annalen der Physik. Leipzig, 1935, 24: 636–679 (in German)

108
Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191

DOI

109
Jeffrey D J. Conduction through a random suspension of spheres. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1973, 335: 355–367

110
Bonnecaze R T, Brady J F. The effective conductivity of random suspensions of spherical particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1991, 432: 445–465

111
Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1990, 430: 285–313

112
Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research, 2003, 5(1/2): 167–171

DOI

113
Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport. Materials Today, 2005, 8(6): 36–44

DOI

114
Patel H E, Das S K, Sundararajan T, Nair A S, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Applied Physics Letters, 2003, 83(14): 2931–2933

DOI

115
Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 2001, 79(14): 2252–2254

DOI

116
Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 2001, 78(6): 718–720

DOI

117
Keblinski P, Phillpot S R, Choi S U S, Eastman J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 2002, 45(4): 855–863

DOI

118
Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T, Das S K. Model for heat conduction in nanofluids. Physical Review Letters, 2004, 93(14): 144301

DOI PMID

119
Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE Journal, 2003, 49(4): 1038–1043

DOI

120
Kapitza P L. Heat transfer and superfluidity of helium II. Physical Review, 1941, 20: 354–355

121
Hu L, Desai T, Keblinski P. Determination of interfacial thermal resistance at the nanoscale. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(19): 195423

DOI

122
Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials, 1987, 21(6): 508–515

DOI

123
Benveniste Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. Journal of Applied Physics, 1987, 61(8): 2840–2843

DOI

124
Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81(10): 6692–6699

DOI

125
Nan C W, Liu G, Lin Y, Li M. Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 2004, 85(16): 3549–3551

DOI

126
Ordonez-Miranda J, Yang R. Effect of a metallic coating on the thermal conductivity of carbon nanofiber–dielectric matrix composites. Composites Science and Technology, 2015, 109: 18–24

DOI

127
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A model for the effective thermal conductivity of metal-nonmetal particulate composites. Journal of Applied Physics, 2012, 111(4): 044319

DOI

128
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. Journal of Applied Physics, 2013, 114(6): 064306

DOI

129
Minnich A, Chen G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Applied Physics Letters, 2007, 91(7): 073105

DOI

130
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. On the thermal conductivity of particulate nanocomposites. Applied Physics Letters, 2011, 98(23): 233111

DOI

131
Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Materials, 2014, 14(3): 295–300

DOI PMID

132
Agari Y, Ueda A, Tanaka M, Nagai S. Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content. Journal of Applied Polymer Science, 1990, 40(56): 929–941

DOI

133
Wang B, Zhou L, Peng X. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer, 2003, 46(14): 2665–2672

DOI

134
Yu K W. Effective nonlinear response of fractal clusters. Physical Review B: Condensed Matter, 1994, 49(14): 9989–9992

DOI PMID

135
Devpura A, Phelan P E, Prasher R S. Size effects on the thermal conductivity of polymers laden with highly conductive filler particles. Microscale Thermophysical Engineering, 2001, 5(3): 177–189

DOI

136
Duong H M, Papavassiliou D V, Lee L L, Mullen K J. Random walks in nanotube composites: improved algorithms and the role of thermal boundary resistance. Applied Physics Letters, 2005, 87(1): 013101

DOI

137
Singh I V, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 2007, 46(9): 842–847

DOI

138
Duong H M, Yamamoto N, Papavassiliou D V, Maruyama S, Wardle B L. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites. Nanotechnology, 2009, 20(15): 155702

DOI PMID

139
Kumar S, Alam M A, Murthy J Y. Effect of percolation on thermal transport in nanotube composites. Applied Physics Letters, 2007, 90(10): 104105

DOI

140
Kumar S, Murthy J Y, Alam M A. Percolating conduction in finite nanotube networks. Physical Review Letters, 2005, 95(6): 066802

DOI PMID

141
Tian W, Yang R. Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Applied Physics Letters, 2007, 90(26): 263105

DOI

Outlines

/