REVIEW ARTICLE

Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies

  • Guangzhao QIN 1 ,
  • Ming HU , 2
Expand
  • 1. Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52064, Germany
  • 2. Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52064, Germany; Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen 52062, Germany

Received date: 03 Jul 2017

Accepted date: 14 Sep 2017

Published date: 08 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Phosphorene, a two-dimensional (2D) elemental semiconductor with a high carrier mobility and intrinsic direct band gap, possesses fascinating chemical and physical properties distinctively different from other 2D materials. Its rapidly growing applications in nano-/opto-electronics and thermoelectrics call for fundamental understanding of the thermal transport properties. Considering the fact that there have been so many studies on the thermal transport in phosphorene, it is on emerging demand to have a review on the progress of previous studies and give an outlook on future work. In this mini-review, the unique thermal transport properties of phosphorene induced by the hinge-like structure are examined. There exists a huge deviation in the reported thermal conductivity of phosphorene in literature. Besides, the mechanism underlying the deviation is discussed by reviewing the effect of different functionals and cutoff distance in calculating the thermal transport properties of phosphorene. It is found that the van der Waals (vdW) interactions play a key role in the formation of resonant bonding, which leads to long-ranged interactions. Taking into account of the vdW interactions and including the long-ranged interactions caused by the resonant bonding with large cutoff distance are important for getting the accurate and converged thermal conductivity of phosphorene. Moreover, a fundamental insight into the thermal transport is provided based on the review of resonant bonding in phosphorene. This mini-review summarizes the progress of the thermal transport in phosphorene and gives an outlook on future horizons, which would benefit the design of phosphorene based nano-electronics.

Cite this article

Guangzhao QIN , Ming HU . Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies[J]. Frontiers in Energy, 2018 , 12(1) : 87 -96 . DOI: 10.1007/s11708-018-0513-y

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (project number: HU 2269/2-1).
1
Balandin A A, Nika D L. Phononics in low-dimensional materials. Materials Today, 2012, 15(6): 266–275

DOI

2
Zhang Y, Wang H, Luo Z, Tan H T, Li B, Sun S, Li Z, Zong Y, Xu Z J, Yang Y, Khor K A, Yan Q. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453

DOI

3
Wan F, Wu X L, Guo J Z, Li J Y, Zhang J P, Niu L, Wang R S. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy, 2015, 13: 450–457

DOI

4
Liu D H, Lü H Y, Wu X L, Wang J, Yan X, Zhang J P, Geng H B, Zhang Y, Yan Q Y. A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz, 2016, 1(6): 496–501

DOI

5
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041

DOI PMID

6
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377

DOI PMID

7
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458

DOI PMID

8
Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(23): 235319

DOI

9
Churchill H O H, Jarillo-Herrero P. Two-dimensional crystals: phosphorus joins the family. Nature Nanotechnology, 2014, 9(5): 330–331

DOI PMID

10
Koenig S P, Doganov R A, Schmidt H, Castro Neto A H, Ozyilmaz B. Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014, 104(10): 103106

DOI

11
Qin G, Qin Z, Yue S Y, Yan Q B, Hu M. External electric field driving the ultra-low thermal conductivity of silicene. Nanoscale, 2017, 9(21): 7227–7234

DOI PMID

12
Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801

DOI PMID

13
Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5: 4475

DOI PMID

14
Zhu Z, Tománek D. Semiconducting layered blue phosphorus: a computational study. Physical Review Letters, 2014, 112(17): 176802

DOI PMID

15
Jiang J W, Park H S. Negative Poisson’s ratio in single-layer black phosphorus. Nature Communications, 2014, 5: 4727

DOI PMID

16
Wei Q, Peng X H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014, 104(25): 251915

DOI

17
Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G. Corrigendum: hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Scientific Reports, 2016, 6(1): 21233

DOI PMID

18
Low T, Engel M, Steiner M, Avouris P. Origin of photoresponse in black phosphorus phototransistors. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 081408

DOI

19
Lv H Y, Lu W J, Shao D F, Sun Y P. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085433

DOI

20
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5: 5678

DOI PMID

21
Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393–6399

DOI PMID

22
Zhu J, Park H, Chen J, Gu X, Zhang H, Karthikeyan S, Wendel N, Campbell S A, Dawber M, Du X, Li M, Wang J, Yang R, Wang X. Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Advanced Electronic Materials, 2016, 2(5):1600040

DOI

23
Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 2015, 6: 8572

DOI PMID

24
Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S, Wu J. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015, 6: 8573

DOI PMID

25
Jang H, Wood J D, Ryder C R, Hersam M C, Cahill D G. Anisotropic thermal conductivity of exfoliated black phosphorus. Advanced Materials, 2015, 27(48): 8017–8022

DOI PMID

26
Liu T H, Chang C C. Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale, 2015, 7(24): 10648–10654

DOI PMID

27
Hong Y, Zhang J, Huang X, Zeng X C. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. Nanoscale, 2015, 7(44): 18716–18724

DOI PMID

28
Xu W, Zhu L, Cai Y, Zhang G, Li B. Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger-Weber potential and molecular dynamics study. Journal of Applied Physics, 2015, 117(21): 214308

DOI

29
Zhang Y Y, Pei Q X, Jiang J W, Wei N, Zhang Y W. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale, 2016, 8(1): 483–491

DOI PMID

30
Zhu L, Zhang G, Li B. Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(21): 214302

DOI

31
Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501

DOI PMID

32
Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Physical Chemistry Chemical Physics: PCCP, 2015, 17(7): 4854–4858

DOI PMID

33
Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(23): 235428

DOI

34
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162

DOI

35
Zhang X L, Xie H, Hu M, Bao H, Yue S Y, Qin G Z, Su G. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(5): 054310

DOI

36
Xie H, Hu M, Bao H. Thermal conductivity of silicene from first-principles. Applied Physics Letters, 2014, 104(13): 131906

DOI

37
Fei R, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Letters, 2014, 14(5): 2884–2889

DOI PMID

38
Qin G, Zhang X L, Yue S Y, Qin Z, Wang H M, Han Y, Hu M. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(16): 165445

DOI

39
Qin G, Qin Z, Fang W Z, Zhang L C, Yue S Y, Yan Q B, Hu M, Su G. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: a comparative study. Nanoscale, 2016, 8(21): 11306–11319

DOI PMID

40
Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Scientific Reports, 2016, 6: 19830

41
Ong Z Y, Cai Y, Zhang G, Zhang Y W. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. Journal of Physical Chemistry C, 2014, 118(43): 25272–25277

DOI

42
Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L. Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Advanced Materials, 2017, 29(5): 1603756

DOI PMID

43
Thomas J A, Turney J E, Iutzi R M, Amon C H, McGaughey A J H. Predicting phonon dispersion relations and lifetimes from the spectral energy density. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(8): 081411

DOI

44
Larkin J, Turney J, Massicotte A, Amon C, Mc-Gaughey A. Comparison and evaluation of spectral energy methods for predicting phonon properties. Journal of Computational and Theoretical Nanoscience, 2014, 11(1): 249–256

DOI

45
Zhang X, Bao H, Hu M. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon. Nanoscale, 2015, 7(14): 6014–6022

DOI PMID

46
Sun B, Gu X, Zeng Q, Huang X, Yan Y, Liu Z, Yang R, Koh Y K. Temperature dependence of anisotropic thermal-conductivity tensor of bulk black phosphorus. Advanced Materials, 2017, 29(3): 1603297

DOI PMID

47
Li W, Carrete J, Mingo N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Applied Physics Letters, 2013, 103(25): 253103

DOI

48
Li W, Mingo N, Lindsay L, Broido D A, Stewart D A, Katcho N A. Thermal conductivity of diamond nanowires from first principles. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195436

DOI

49
Broido D A, Malorny M, Birner G, Mingo N, Stewart D A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Applied Physics Letters, 2007, 91(23): 231922

DOI

50
Li W, Lindsay L, Broido D A, Stewart D A, Mingo N. Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(17): 174307

DOI

51
Li W, Carrete J, Katcho N A, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, 185(6): 1747–1758

DOI

52
Carrete J, Li W, Mingo N, Wang S, Curtarolo S. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019

DOI

53
Jain A, McGaughey A J. Effect of exchange-correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon. Computational Materials Science, 2015, 110: 115–120

DOI

54
Lee S, Esfarjani K, Luo T, Zhou J, Tian Z, Chen G. Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 2014, 5(4): 3525

PMID

55
Hu Z X, Kong X, Qiao J, Normand B, Ji W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale, 2016, 8(5): 2740–2750

DOI PMID

56
Kong B D, Paul S, Nardelli M B, Kim K W. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Physical Review B: Condensed Matter, 2009, 80(3): 033406

DOI

57
Cocemasov A I, Nika D L, Balandin A A. Phonons in twisted bilayer graphene. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(3): 035428

DOI

58
Li H, Ying H, Chen X, Nika D L, Cocemasov A I, Cai W, Balandin A A, Chen S. Thermal conductivity of twisted bilayer graphene. Nanoscale, 2014, 6(22): 13402–13408

DOI PMID

59
Zhang X, Gao Y, Chen Y, Hu M. Robustly engineering thermal conductivity of bilayer graphene by interlayer bonding. Scientific Reports, 2016, 6(1): 22011

DOI PMID

60
Qin G, Qin Z, Wang H, Hu M. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1/T law. Physical Review B: Condensed Matter and Materials Physics, 2017, 95(19): 195416

DOI

61
Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581

DOI PMID

62
Gu X, Yang R. First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. Journal of Applied Physics, 2015, 117(2): 025102

DOI

63
Xie H, Ouyang T, Germaneau É, Qin G, Hu M, Bao H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(7): 075404

DOI

64
Bonini N, Garg J, Marzari N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Letters, 2012, 12(6): 2673–2678

DOI PMID

65
Kuang Y, Lindsay L, Shi S, Wang X, Huang B. Thermal conductivity of graphene mediated by strain and size. International Journal of Heat and Mass Transfer, 2016, 101(1): 772–778

DOI

66
Kuang Y D, Lindsay L, Shi S Q, Zheng G P. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale, 2016, 8(6): 3760–3767

DOI PMID

67
Lucovsky G, White R M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1973, 8(2): 660–667

DOI

68
Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M. Resonant bonding in crystalline phase-change materials. Nature Materials, 2008, 7(8): 653–658

DOI PMID

69
Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M. A map for phase-change materials. Nature Materials, 2008, 7(12): 972–977

DOI PMID

70
Matsunaga T, Yamada N, Kojima R, Shamoto S, Sato M, Tanida H, Uruga T, Kohara S, Takata M, Zalden P, Bruns G, Sergueev I, Wille H C, Hermann R P, Wuttig M. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties. Advanced Functional Materials, 2011, 21(12): 2232–2239

DOI

Outlines

/