RESEARCH ARTICLE

Exergy analysis and performance enhancement ofisopropanol-acetone-hydrogen chemical heat pump

  • Min XU ,
  • Jun CAI ,
  • Xiulan HUAI
Expand
  • Institute of Engineering Thermophysics,Chinese Academy of Sciences, Beijing 100190, China

Received date: 02 May 2017

Accepted date: 27 Sep 2017

Published date: 14 Dec 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbHGermany

Abstract

Exergy loss analysis was conducted to identify the irreversibilityin each component of the isopropanol-acetone-hydrogen chemical heatpump (IAH-CHP). The results indicate that the highest irreversibilityon a system basis occurs in the distillation column. Moreover, theeffect of operating parameters on thermodynamic performances of theIAH-CHP was studied and the optimal conditions were obtained. Finally,the potential methods to reduce the irreversibility of the IAH-CHPsystem were investigated. It is found that reactive distillation isapromising alternative. The enthalpy and exergy efficiency of theIAH-CHP with reactive distillation increases by 24.1% and 23.2%, respectively.

Cite this article

Min XU , Jun CAI , Xiulan HUAI . Exergy analysis and performance enhancement ofisopropanol-acetone-hydrogen chemical heat pump[J]. Frontiers in Energy, 2017 , 11(4) : 510 -515 . DOI: 10.1007/s11708-017-0508-0

Acknowledgment

This work was supported by the NationalKey R&D Program of China (2016YFB0601200) and the National NaturalScience Foundation of China (Grant Nos. 51476173, 51576194).
1
Spoelstra S, Haije  W G, Dijkstra  J W. Techno-economic feasibility of high-temperature high-lift chemical heat pumps for upgrading industrialwaste heat. Applied Thermal Engineering, 2002, 22(14): 1619–1630

DOI

2
Gandia L M, Montes  M. Effect of the design variables on the energy performance and size parametersof a heat transformer based on the system acetone/H2/2-propanol. International Journal ofEnergy Research, 1992, 16(9): 851–864

DOI

3
Kim T G, Yeo  Y K, Song  H K. Chemical heat pump based on dehydrogenationand hydrogenation of i-propanol and acetone. International Journal of EnergyResearch, 1992, 16(9): 897–916

DOI

4
Chung Y, Jeong  H K, Song  H K, Park  W H. Modelling and simulation of the chemical reaction heat pump systemadopting the reactive distillation process. Computers & Chemical Engineering, 1997, 21: S1007–S1012

DOI

5
KlinSoda I, Piumsomboon  P. Isopropanol-Acetone-Hydrogen chemical heat pump: a demonstrationunit. Energy Conversion and Management, 2007, 48(4): 1200–1207

DOI

6
Esen H, Inalli  M, Esen M ,  Pihtili K . Energy and exergy analysis of a ground-coupled heat pump system withtwo horizontal ground heat exchangers. Building and Environment, 2007, 42(10): 3606–3615

DOI

7
OzgenerO, Hepbasli A. A review on the energy and exergy analysis of solar assisted heat pumpsystems.Renewable & Sustainable EnergyReviews, 2007, 11(3): 482–496 doi:10.1016/j.rser.2004.12.010

8
Xu M, Xin  F, Li X ,  Huai X, Guo  J, Liu H . Equilibrium model and performances of Isopropanol-Acetone-Hydrogenchemical heat pump with reactive distillation column. Industrial & Engineering Chemistry Research, 2013, 52(11): 4040–4048

DOI

9
Kato Y, Nakagawa  N, Kameyama H . Study of Chemical heat pumpwith reaction couple of acetone hydrogenation/2-propanol dehydrogenation:kinetics of the hydrogenation of acetone. Kagaku Ronbunshu, 1987, 13(5): 714–717

DOI

Outlines

/