RESEARCH ARTICLE

Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction

  • Na SUN 1 ,
  • Minglei WANG 1 ,
  • Jinfa CHANG 2 ,
  • Junjie GE , 2 ,
  • Wei XING , 2 ,
  • Guangjie SHAO 3
Expand
  • 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Laboratory of Advanced Power Sources, Changchun 130022, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
  • 2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Laboratory of Advanced Power Sources, Changchun 130022, China
  • 3. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

Received date: 30 Mar 2017

Accepted date: 14 Jun 2017

Published date: 07 Sep 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Pd nanoparticles supported on nitrogen doped carbon black (Vulcan XC-72R) with two different levels of doping were prepared by the microwave-assisted ethylene glycol reduction process and used as catalyst for the formic acid electro-oxidation (FAEO). The results indicate that the different nitrogen doping contents in Pd/N-C catalysts have a significant effect on the performance of FAEO. A higher N content facilitates the uniform dispersion of Pd nanoparticles on carbon black with narrow particle size distribution. Furthermore, the electrochemical results show that the catalyst with a higher N-doping content possesses a higher catalytic activity and a long-term stability for FAEO. The peak current density of the Pd/N-C (high) catalyst is 1.27 and 2.31 times that of the Pd/N-C (low) and homemade Pd/C-H catalyst. The present paper may provide a simple method for preparation of high-performance anode catalyst for direct formic acid fuel cells (DFAFCs).

Cite this article

Na SUN , Minglei WANG , Jinfa CHANG , Junjie GE , Wei XING , Guangjie SHAO . Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction[J]. Frontiers in Energy, 2017 , 11(3) : 310 -317 . DOI: 10.1007/s11708-017-0491-5

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant Nos. 21373199, 21433003), the Strategic Priority Research Program of CAS (XDA09030104), Jilin Province Science and Technology Development Program (20150101066JC, 20160622037JC), and the Hundred Talents Program of Chinese Academy of Sciences and the Recruitment Program of Foreign Experts (WQ20122200077).
1
Rice C, Haa  S, Masela R I ,  Wieckowski A . Catalysts for direct formic acid fuel cells. Journal of Power Sources, 2003, 115(2): 229–235 

DOI

2
Wang J, Liu  Y, Okada T . Novel platinum-macrocycle composite catalysts for direct formic acid fuel cells. Journal of Applied Electrochemistry, 2016, 46(8): 901–905 

DOI

3
Yu X, Pickup  P G. Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources, 2008, 182(1): 124–132 

DOI

4
Antolini E. Palladium in fuel cell catalysis. Energy & Environmental Science, 2009, 2(9): 915–931 

DOI

5
El-Nagar G A, Darweesh  A F, Sadiek  I. A novel nano-palladium complex anode for formic acid electro-oxidation. Electrochimica Acta, 2016, 215: 334–338 

DOI

6
Feng L, Yao  S, Zhao X ,  Yan L, Liu  C, Xing W . Electrocatalytic properties of Pd/C catalyst for formic acid electrooxidation promoted by europium oxide. Journal of Power Sources, 2012, 197: 38–43 

DOI

7
Xiong B, Zhou  Y, Zhao Y ,  Wang J, Chen  X, O’Hayre R ,  Shao Z. The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon, 2013, 52: 181–192 

DOI

8
Liang J, Hassan  M, Zhu D ,  Guo L, Bo  X. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2017, 490: 576–586 

DOI

9
Liu D, Li  L, You T . Superior catalytic performances of platinum nanoparticles loaded nitrogen-doped graphene toward methanol oxidation and hydrogen evolution reaction. Journal of Colloid and Interface Science, 2017, 487: 330–335 

DOI

10
Ramakrishna S U B ,  Srinivasulu Reddy D ,  Shiva Kumar S ,  Himabindu V . Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser. International Journal of Hydrogen Energy, 2016, 41(45): 20447–20454 

DOI

11
Xiong Q, Chi  H, Zhang J ,  Tu J. Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. Journal of Alloys and Compounds, 2016, 688, Part B: 729–735

12
Xu G, Dou  H, Geng X ,  Han J, Chen  L, Zhu H . Free standing three-dimensional nitrogen-doped carbon nanowire array for high-performance supercapacitors. Chemical Engineering Journal, 2017, 308: 222–228 

DOI

13
Xu J, Ju  Z, Cao J ,  Wang W, Wang  C, Chen Z . Microwave synthesis of nitrogen-doped mesoporous carbon/nickel-cobalt hydroxide microspheres for high-performance supercapacitors. Journal of Alloys and Compounds, 2016, 689: 489–499 

DOI

14
Zhang Y, Chen  L, Meng Y ,  Xie J, Guo  Y, Xiao D . Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. Journal of Power Sources, 2016, 335: 20–30 

DOI

15
Wu G, Zelenay  P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Accounts of Chemical Research, 2013, 46(8): 1878–1889 

DOI

16
Matter P H, Zhang  L, Ozkan U S . The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96 

DOI

17
Bae G, Youn  D H, Han  S, Lee J S . The role of nitrogen in a carbon support on the increased activity and stability of a Pt catalyst in electrochemical hydrogen oxidation. Carbon, 2013, 51: 274–281 

DOI

18
Chang J, Sun  X, Feng L ,  Xing W, Qin  X, Shao G . Effect of nitrogen-doped acetylene carbon black supported Pd nanocatalyst on formic acid electrooxidation. Journal of Power Sources, 2013, 239: 94–102 

DOI

19
Xiao M, Zhu  J, Ge J ,  Liu C, Xing  W. The enhanced electrocatalytic activity and stability of supported Pt nanopartciles for methanol electro-oxidation through the optimized oxidation degree of carbon nanotubes. Journal of Power Sources, 2015, 281: 34–43 

DOI

20
Ham D J, Pak  C, Bae G H ,  Han S, Kwon  K, Jin S A ,  Chang H ,  Choi S H ,  Lee J S . Palladium-nickel alloys loaded on tungsten carbide as platinum-free anode electrocatalysts for polymer electrolyte membrane fuel cells. Chemical Communications, 2011, 47(20): 5792–5794 

DOI

21
Kawaguchi T, Sugimoto  W, Murakami Y ,  Takasu Y . Temperature dependence of the oxidation of carbon monoxide on carbon supported Pt, Ru, and PtRu. Electrochemistry Communications, 2004, 6(5): 480–483 

DOI

22
Zhang J F, Xu  Y, Zhang B . Facile synthesis of 3D Pd-P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chemical Communications, 2014, 50(88): 13451–13453 

DOI

Outlines

/