RESEARCH ARTICLE

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics

  • Sahithya REDDIVARI 1 ,
  • Christian LASTOSKIE , 2 ,
  • Ruofei WU 3 ,
  • Junliang ZHANG 3
Expand
  • 1. Perimeter College, Georgia State University, Clarkston, GA 30021, USA
  • 2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
  • 3. Institute of Fuel Cells, MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 10 Jul 2017

Accepted date: 28 Jul 2017

Published date: 07 Sep 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn2O4. Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn2O4 ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn2O4 surface is the primary reason for reduced cell life in LiMn2O4 batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn2+ in this interface layer are not yet well understood.

To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn2O4 cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxidation products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electrolyte solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.

Cite this article

Sahithya REDDIVARI , Christian LASTOSKIE , Ruofei WU , Junliang ZHANG . Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics[J]. Frontiers in Energy, 2017 , 11(3) : 365 -373 . DOI: 10.1007/s11708-017-0500-8

Acknowledgments

The authors are grateful to acknowledge sponsorship of this research from the Joint Institute of the University of Michigan and Shanghai Jiao Tong University. S.R. also received financial support for this work from the General Motors / University of Michigan Automotive Battery Consortium for the Drivetrain research center.
1
Scrosati B, Garche  J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430 

DOI

2
Dunn B, Kamath  H, Tarascon J M . Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928–935

DOI

3
Desilvestro J, Haas  O. Metal oxide cathode materials for electrochemical energy storage: a review. ChemInform, 1990, 137(1): 5C–22C

4
Vetter J,Novák P, Wagner M R, Veit C,Moller   K C,Besenhard  J O,WinterM, Wohlfahrt-Mehrens M, Vogler C, Hammouche A.Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1): 269–281

5
Rodriguezcarvajal J ,  Rousse G ,  Masquelier C ,  Hervieu M . Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4. Physical Review Letters, 1998, 81(21): 4660–4663

DOI

6
Amine K, Chen  C H, Liu  J, Hammond M ,  Jansen A ,  Dees D, Bloom  I, Vissers D ,  Henriksen G . Factors responsible for impedance rise in high power lithium ion batteries. Journal of Power Sources, 2001, 97(01): 684–687

DOI

7
Xu B, Fell  C R, Chi  M, Meng Y S . Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy & Environmental Science, 2011, 4(6): 2223–2233 

DOI

8
Chen C, Liu  J, Amine K . Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries. Journal of Power Sources, 2001, 96(2): 321–328 

DOI

9
Edström K, Gustafsson  T, Thomas J O . The cathode-electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004, 50(2–3): 397–403

DOI

10
Balbuena P B, Wang  Y H. Lithium-ion Batteries: Solid-electrolyte Interphase. USA: Imperial College Press, 2004

11
Yang L, Ravdel  B, Lucht B L . Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97 

DOI

12
Zhan C, Lu  J, Jeremy K A ,  Wu T, Jansen  A N. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nature Communications, 2013, 4(9): 2437

13
Edstrom K, Gustafsson  T, Thomas J O . The cathode–electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004, 50(2–3): 397–403 

DOI

14
Doh C H, Lee  J H, Lee  D J, Jin  B S, Moon  S I. The quantitative analyses of the dissolved manganese in the electrolyte of  Li/LiMn2O4 cell using by ion chromatography. Bulletin of the Korean Chemical Society, 2009, 30(10): 4–7

15
Demeaux J, Caillon-Caravanier  M, Galiano H ,  Lemordant D ,  Claude-Montigny B . LiNi0.4Mn1.6O4/electrolyte and carbon black/electrolyte high voltage interfaces: to evidence the chemical and electronic contributions of the solvent on the cathode-electrolyte interface formation. ECS Transactions, 2012, 41(31): 65–78

16
Gulbinska M K . Catalytic materials and processes in secondary lithium-ion batteries. New & Future Developments in Catalysis, 2013: 479–498

17
Jow R T, Xu  K, Borodin O ,  Ue M. Electrolytes for Lithium and Lithium-ion Batteries. New York: Springer,  2014

18
Amine K, Tukamoto  H, Yasuda H ,  Fujita Y . Preparation and electrochemical investigation of LiMn2−xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries. Journal of Power Sources, 1997, 68(2): 604–608

DOI

19
Banov B, Todorov  Y, Trifonova A ,  Momchilov A ,  Manev V . LiMnCoO4 cathode with enhanced cycleability. Journal of Power Sources, 1997, 68(2): 578–581

DOI

20
Gummow R J, de Kock  A, Thackeray M M . Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994, 69(1): 59–67 

DOI

21
Myung S T, Komaba  S, Kumagai N . Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the Eemulsion drying method. Journal of the Electrochemical Society, 2001, 148(5): A482–A489

DOI

22
Bhaskar A, Mikhailova  D, Kiziltas-Yavuz N ,  Nikolowski K ,  Oswald S ,  Bramnik N N ,  Ehrenberg H. 3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries. Progress in Solid State Chemistry, 2014, 42(4): 128–148 

DOI

23
Chen Z, Qin  Y, Amine K ,  Sun Y K . Role of surface coating on cathode materials for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20(36): 7606–7612

DOI

24
Li C, Zhang  H P, Fu  L J, Liu  H, Wu Y P ,  Rahmb E ,  Holze R ,  Wu H Q . Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006, 51(19): 3872–3883 

DOI

25
Sahan H, Goktepe  H, Patat S . A novel method to improve the electrochemical performance of LiMn2O4 cathode active material by CaCO3 surface coating. Journal of Materials Science and Technology, 2011, 27(5): 415–420 

DOI

26
Wu H C, Su  C Y, Shieh  D T, Yang  M H, Wu  N L. Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive. Electrochemical and Solid-State Letters, 2006, 9(12): A537 

DOI

27
Eom J Y, Jung  I H, Lee  J H. Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries. Journal of Power Sources, 2011, 196(22): 9810–9814

DOI

28
Ogawa T, Miyano  M, Suzuki Y ,  Suzuki A ,  Tsuboi H ,  Hatakeyama N ,  Endou A ,  Takaba H ,  Miyamoto A . A theoretical study on initial processes of Li-ion transport at the electrolyte/cathode interface: a quantum chemical molecular dynamics approach. Japanese Journal of Applied Physics, 2010, 49(4): 04DP11–04DP11–6 

DOI

29
Tasaki K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. Journal of Physical Chemistry B, 2005, 109(7): 2920–2933 

DOI

30
Xing L, Li  W, Wang C ,  Gu F, Xu  M, Tan C ,  Yi J. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. Journal of Physical Chemistry B, 2009, 113(52): 16596–16602

DOI

31
Leung K. First-principles modeling of the initial stages of organic solvent decomposition on LixMn2O4 (100) surfaces. Journal of Physical Chemistry C, 2012, 116(18): 9852–9861

DOI

32
Chenoweth K, van Duin  A C T, Persson  P, Cheng M J ,  Oxgaard J ,  Goddard W A  III. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. Journal of Physical Chemistry A, 2008, 112(37): 14645–14654

DOI

33
Chenoweth K, van Duin  A C T, Goddard  W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 2008, 112(5): 1040–1053

DOI

34
Bedrov D, Smith  G D, van Duin  A C T. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. Journal of Physical Chemistry A, 2012, 116(11): 2978–2985

DOI

35
Reddivari S, Lastoskie  C M, van Duin  A C T. A reactive force field for manganese oxide reduction by methane. Physical Chemistry Chemical Physics, (in press)

36
Reddivari S. Electrode-electrolyte interface layers in lithium ion batteries using reavtive force field based molecular dynamics. Dissertation for the Doctoral Degree. Ann Arbor: University of Michigan, 2016

37
Borodin O, Smith  G D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. Journal of Physical Chemistry B, 2009, 113(6): 1763–1776 

DOI

38
Martínez L, Andrade  R, Birgin E G ,  Martinez J M . PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009, 30(13): 2157–2164

DOI

39
Plimpton S. Fast parallel algorithms for short-range molecular dynamics.  Journal of Computational Physics, 1993, 117(1): 1–19

40
Eriksson T, Andersson  A M, Bishop  A G, Gejke  C, Gustafsson T ,  Thomas J O . Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes. Journal of the Electrochemical Society, 2002, 149(1): A69–A78 

DOI

41
Aurbach D, Markovsky  B, Salitra G ,  Markevich E ,  Talyossef Y ,  Koltypin M ,  Nazar L ,  Ellis B ,  Kovacheva D . Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 2007, 165(2): 491–499 

DOI

42
Matsui M, Dokko  K, Kanamura K . Dynamic behavior of surface film on LiCoO2 thin film electrode. Journal of Power Sources, 2008, 177(1): 184–193 

DOI

43
Aurbach D, Ein-Ely  Y, Zaban A . The surface chemistry of lithium electrodes in alkyl carbonate solutions. Journal of the Electrochemical Society, 1994, 141(1): L1–L3 

DOI

44
Carroll K J, Qian  D, Fell C ,  Calvin S ,  Veith G M ,  Chi M, Baggetto  L, Meng Y S . Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Physical Chemistry Chemical Physics Pccp, 2013, 15(26): 11128–11138

DOI

45
Aurbach D, Zaban  A, Gofer Y ,  Ely Y E ,  Weissman I ,  Chusid O ,  Abramson O . Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. Journal of Power Sources, 1995, 54(1): 76–84 

DOI

46
Lux S F, Lucas  I T, Pollak  E, Passerini S ,  Winter M ,  Kostecki R . The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochemistry Communications, 2012, 14(1): 47–50 

DOI

47
Simmen F, Hintennach  A, Horisberger M ,  LippertT, Novák  P, Schneider C W ,  Wokaun A . Aspects of the surface layer formation on Li1+xMn2O4−δ during electrochemical cycling. Journal of the Electrochemical Society, 2010, 157(9): A1026

DOI

48
Wang E, Ofer  D, Bowden W ,  Iltchev N ,  Moses R ,  Brandt K . Stability of lithium ion spinel cells. III. improved life of charged cells. Journal of the Electrochemical Society, 2000, 147(11): 4023–4028

DOI

49
Wang R, Li  X, Wang Z ,  Guo H. Manganese dissolution from LiMn2O4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive. Journal of Solid State Electrochemistry, 2016, 20(1): 19–28

DOI

Outlines

/