RESEARCH ARTICLE

Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction

  • Hongjie ZHANG 1 ,
  • Yachao ZENG 1 ,
  • Longsheng CAO 1 ,
  • Limeng YANG 1 ,
  • Dahui FANG 1 ,
  • Baolian YI 2 ,
  • Zhigang SHAO , 2
Expand
  • 1. Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of the Chinese Academy of Sciences, Beijing 100039, China
  • 2. Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received date: 11 Jul 2017

Accepted date: 20 Jul 2017

Published date: 07 Sep 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed of interconnected nanoparticles were prepared by using a soft template method with CTAB as the surface active agent. The physical characterization and electrocatalytic performance of Pt NWs and PtNi NWs catalysts for ORR were investigated and the results were compared with the commercial Pt/C catalyst. The atomic ratio of Pt and Ni in PtNi alloy was approximately 3 to 1. The results show that after alloying with Ni, the binding energy of Pt shifts to higher values, indicating the change of its electronic structure, and that Pt3Ni NWs catalyst has a significantly higher electrocatalytic activity and good stability for ORR as compared to Pt NWs and even Pt/C catalyst. The enhanced electrocatalytic activity of Pt3Ni NWs catalyst is mainly resulted from the downshifted-band center of Pt caused by the interaction between Pt and Ni in the alloy, which facilitates the desorption of oxygen containing species (Oads or OHads) and the release of active sites.

Cite this article

Hongjie ZHANG , Yachao ZENG , Longsheng CAO , Limeng YANG , Dahui FANG , Baolian YI , Zhigang SHAO . Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction[J]. Frontiers in Energy, 2017 , 11(3) : 260 -267 . DOI: 10.1007/s11708-017-0499-x

Acknowledgments

This work is financially supported by The National Key Research and Development Program of China (Grant No. 2016YFB0101208) and National Natural Science Foundation of China (Grant No.U1508202 and No.61433013).
1
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51

DOI

2
Tang Q, Jiang  L, Jiang Q ,  Wang S, Sun  G. Enhanced activity and stability of a Au decorated Pt/PdCo/C electrocatalyst toward oxygen reduction reaction. Electrochimica Acta, 2012, 77(9): 104–110

DOI

3
Bele M, Jovanovic  P, Pavlisic A ,  Jozinovic B ,  Zorko M ,  Recnik A ,  Chernyshova E ,  Hocevar S ,  Hodnik N ,  Gaberscek M . A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis. Chemical Communications, 2014, 50(86): 13124–13126

DOI

4
Zhang J, Sasaki  K, Sutter E ,  Adzic R R . Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222

DOI

5
Wang Y J, Zhao  N N, Fang  B Z, Li  H, Bi X T T ,  Wang H J . Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467

DOI

6
Chen Z W, Higgins  D, Yu A P ,  Zhang L ,  Zhang J J . A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science, 2011, 4(9): 3167–3192

DOI

7
Zheng Y, Jiao  Y, Jaroniec M ,  Jin Y G ,  Qiao S Z . Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small, 2012, 8(23): 3550–3566

DOI

8
Bai Y Z, Yi  B L, Li  J, Jiang S F ,  Zhang H J ,  Shao Z G ,  Song Y J . A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework. Chinese Journal of Catalysis, 2016, 37(7): 1127–1133

DOI

9
Greeley J, Mavrikakis  M. Alloy catalysts designed from first principles. Nature Materials, 2004, 3(11): 810–815

DOI

10
Wu J B, Yang  H. Platinum-based oxygen reduction electrocatalysts. Accounts of Chemical Research, 2013, 46(8): 1848–1857

DOI

11
Zhang J, Mo  Y, Vukmirovic M B ,  Klie R, Sasaki  K, Adzic R R . Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. Journal of Physical Chemistry B Materials Surfaces Interfaces Amp Biophysical, 2004, 108(30): 10955–10964

12
Zhang J L, Vukmirovic  M B, Xu  Y, Mavrikakis M ,  Adzic R R . Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 44(14): 2132–2135

DOI

13
Zhu H Y, Zhang  S, Guo S J ,  Su D, Sun  S H. Synthetic control of FePtM nanorods (M= Cu, Ni) to enhance the oxygen reduction reaction. Journal of the American Chemical Society, 2013, 135(19): 7130–7133

DOI

14
You H J, Yang  S C, Ding  B J, Yang  H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. ChemInform, 2013, 42(7): 2880–2904

15
Zhao X, Yin  M, Ma L ,  Liang L ,  Liu C P ,  Liao J H ,  Lu T H ,  Xing W. Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science, 2011, 4(8): 2736–2753

DOI

16
Li Y J, Chen  L, Chen K ,  Quan F X ,  Chen C F . Monodisperse PdCu@PtCu Core@Shell nanocrystal and their high activity and durability for oxygen reduction reaction. Electrochimica Acta, 2016, 192: 227–233

DOI

17
Wang G, Huang  B, Xiao L ,  Ren Z, Chen  H, Wang D ,  Abruña H D ,  Lu J, Zhuang  L. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. Journal of the American Chemical Society, 2014, 136(27): 9643–9649

DOI

18
Huang X Q, Zhao  Z P, Chen  Y, Zhu E B ,  Li M F ,  Duan X F ,  Huang Y . A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy & Environmental Science, 2014, 7(9): 2957–2962

DOI

19
Huang X Q, Zhao  Z P, Cao  L, Chen Y ,  Zhu E B ,  Lin Z Y ,  Li M F ,  Yan A M ,  Zettl A ,  Wang Y M ,  Duan X F ,  Mueller T ,  Huang Y . High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science, 2015, 348(6240): 1230–1234

DOI

20
Chen C, Kang  Y J, Huo  Z Y, Zhu  Z W, Huang  W Y, Xin  H L L, Snyder  J D, Li  D G, Herron  J A, Mavrikakis  M, Chi M F ,  More K L ,  Li Y D ,  Markovic N M ,  Somorjai G A ,  Yang P D ,  Stamenkovic V R . Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343(6177): 1339–1343

DOI

21
Yang H Z, Zhang  J, Sun K ,  Zou S Z ,  Fang J Y . Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes. Angewandte Chemie International Edition in English, 2010, 49(38): 6848–6851

DOI

22
Wang S Y, Jiang  S P, Wang  X, Guo J . Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells. Electrochimica Acta, 2011, 56(3): 1563–1569

DOI

23
Pozio A, de Francesco  M, Cemmi A ,  Cardellini F ,  Giorgi L . Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002, 105(1): 13–19

DOI

24
Stamenkovic V R ,  Fowler B ,  Mun B S ,  Wang G F ,  Ross P N ,  Lucas C A ,  Markovic N M . Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315(5811): 493–497

DOI

25
Bu L Z, Zhang  N, Guo S J ,  Zhang X ,  Li J, Yao  J L, Wu  T, Lu G ,  Ma J Y ,  Su D, Huang  X Q. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354(6318): 1410–1414

DOI

26
Suo Y G, Zhuang  L, Lu J T . First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angewandte Chemie, 2007, 46(16): 2862–2864

DOI

27
Jayasayee K, van Veen  J A R, Manivasagam  T G, Celebi  S, Hensen E J M ,  de Bruijn F A . Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals. Applied Catalysis B: Environmental, 2012, 111–112(2): 515–526

DOI

28
Wang D S, Li  Y D. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Advanced Materials, 2011, 23(9): 1044–1060

DOI

Outlines

/