Surface tension of liquid metal: role, mechanism and application
Received date: 26 Nov 2016
Accepted date: 15 Jan 2017
Published date: 14 Dec 2017
Copyright
Surface tension plays a core role in dominating various surface and interface phenomena. For liquid metals with high melting temperature, a profound understanding of the behaviors of surface tension is crucial in industrial processes such as casting, welding, and solidification, etc. Recently, the room temperature liquid metal (RTLM) mainly composed of gallium-based alloys has caused widespread concerns due to its increasingly realized unique virtues. The surface properties of such materials are rather vital in nearly all applications involved from chip cooling, thermal energy harvesting, hydrogen generation, shape changeable soft machines, printed electronics to 3D fabrication, etc. owing to its pretty large surface tension of approximately 700 mN/m. In order to promote the research of surface tension of RTLM, this paper is dedicated to present an overview on the roles and mechanisms of surface tension of liquid metal and summarize the latest progresses on the understanding of the basic knowledge, theories, influencing factors and experimental measurement methods clarified so far. As a practical technique to regulate the surface tension of RTLM, the fundamental principles and applications of electrowetting are also interpreted. Moreover, the unique phenomena of RTLM surface tension issues such as surface tension driven self-actuation, modified wettability on various substrates and the functions of oxides are discussed to give an insight into the acting mechanism of surface tension. Furthermore, future directions worthy of pursuing are pointed out.
Xi ZHAO , Shuo XU , Jing LIU . Surface tension of liquid metal: role, mechanism and application[J]. Frontiers in Energy, 2017 , 11(4) : 535 -567 . DOI: 10.1007/s11708-017-0463-9
1 |
Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335–354
|
2 |
Ko E Y, Choi J, Park J Y, Sohn I. Simulation of low carbon steel solidification and mold flux crystallization in continuous casting using a multi-mold simulator. Metals and Materials International, 2014, 20(1): 141–151
|
3 |
Shin M, Oh J S, Lee J, Jung S, Lee J. Dissolution rate of solid iron into liquid Fe-C alloy. Metals and Materials International, 2014, 20(6): 1139–1143
|
4 |
Aqra F, Ayyad A. Surface tension of liquid alkali, alkaline, and main group metals: theoretical treatment and relationship investigations. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 2011, 42(9): 2680–2684
|
5 |
Amin M R, Gosh R C, Bhuiyan G M. Surface tension of liquid transition and noble metals. Journal of Non-Crystalline Solids, 2013, 380: 42–47
|
6 |
Zhao J, Li J R, Liu S, Han M. A method to measure surface tension of liquid superalloy at room temperature. Hot Working Technology, 2009, 38(23): 57–60
|
7 |
Seo S M, Paik Y H, Kim D S, Lee W P. Interfacial tension and contact angle variations of SUS304 melt in contact with solid oxides and CaO-SiO2-Al2O3 (CaF2) slags at 1470°C. Metals and Materials International, 1996, 2(2): 65–69
|
8 |
Vitos L, Ruban A V, Skriver H L, Kollár J. The surface energy of metals. Surface Science, 1998, 411(1-2): 186–202
|
9 |
Kim S K, Wang W, Kang Y B. Modeling surface tension of multicomponent liquid steel using modified quasichemical model and constrained Gibbs energy minimization. Metals and Materials International, 2015, 21(4): 765–774
|
10 |
Gough R C, Morishita A M, Dang J H, Moorefield M R, Shiroma W A, Ohta A T. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro & Nano Systems Letters, 2015, 3(1): 1–9
|
11 |
Yaws C L. Handbook of Vapor Pressure: Volume 4: Inorganic Componds and Elements. Huston: Gulf Professional Publishing, 1995
|
12 |
Blair F M, Whitworth J M, Mccabe J F. The physical properties of a gallium alloy restorative material. Dental Materials Official Publication of the Academy of Dental Materials, 1995, 11(4): 277–280
|
13 |
Zhang Q, Zheng Y, Liu J. Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Frontiers in Energy, 2012, 6(4): 311–340
|
14 |
Yang X H, Tan S C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Conversion and Management, 2016, 117: 577–585
|
15 |
Ge H S, Liu J. Keeping smartphones cool with gallium phase change material. Journal of Heat Transfer, 2013, 135(5): 054503
|
16 |
Ge H S, Li H Y, Mei S F, Liu J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renewable & Sustainable Energy Reviews, 2013, 21: 331–346
|
17 |
Deng Y G, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. Journal of Electronic Packaging, 2010, 132(3): 031009
|
18 |
Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Physics Letters A, 2007, 361(3): 252–256
|
19 |
Vetrovec J, Litt A S, Copeland D A, Junghans J, Durkee R. Liquid metal heat sink for high-power laser diodes. In: International Society for Optics and Photonics, California, USA: SPIE LASE, 2013: 86050
|
20 |
Jackel J L, Hackwood S, Veselka J J, Beni G. Electrowetting switch for multimode optical fibers. Applied Optics, 1983, 22(11): 1765–1770
|
21 |
Sen P, Kim C J. Microscale liquid-metal switches—a review. IEEE Transactions on Industrial Electronics, 2009, 56(4): 1314–1330
|
22 |
Tsai J T H, Ho C M, Wang F C, Liang C T. Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium. Applied Physics Letters, 2009, 95(25): 251110
|
23 |
Ponce Wong R D, Posner J D, Santos V J. Flexible microfluidic normal force sensor skin for tactile feedback. Sensors and Actuators A, Physical, 2012, 179: 62–69
|
24 |
Majidi C, Kramer R, Wood R J. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Materials and Structures, 2011, 20(10): 105017
|
25 |
Park Y L, Majidi C, Kramer R, Bérard P, Wood R J. Hyperelastic pressure sensing with a liquid-embedded elastomer. Journal of Micromechanics and Microengineering, 2010, 20(12): 125029
|
26 |
Fassler A, Majidi C. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics. Smart Materials and Structures, 2013, 22(5): 055023
|
27 |
Cheng S, Wu Z. A microfluidic, reversibly stretchable, large-area wireless strain sensor. Advanced Functional Materials, 2011, 21(12): 2282–2290
|
28 |
So J H, Thelen J, Qusba A, Hayes G J, Lazzi J, Dickey M D. Reversibly deformable and mechanically tunable fluidic antennas. Advanced Functional Materials, 2009, 19(22): 3632–3637
|
29 |
Cheng S, Rydberg A, Hjort K, Wu Z. Liquid metal stretchable unbalanced loop antenna. Applied Physics Letters, 2009, 94(14): 144103
|
30 |
Kubo M, Li X, Kim C, Hashimoto M, Wiley B J, Ham D, Whitesides G M. Stretchable microfluidic radiofrequency antennas. Advanced Materials, 2010, 22(25): 2749–2752
|
31 |
Hayes G J, So J H, Qusba A, Dickey M D, Lazzi G. Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2151–2156
|
32 |
Tang S Y, Khoshmanesh K, Sivan V, Petersen P, O’mullane A P, Abbott D, Mitchell A, Kalantarzadeh K. Liquid metal enabled pump. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3304–3309
|
33 |
Tang S Y, Sivan V, Petersen P, Zhang W, Morrison P D, Kalantar-Zadeh K, Mitchell A, Khoshmanesh K. Liquid metal actuator for inducing chaotic advection. Advanced Functional Materials, 2014, 24(37): 5851–5858
|
34 |
Zhang J, Sheng L, Jin C, Liu J. Liquid metal as connecting or functional recovery channel for the transected sciatic Nerve. Eprint arXiv:1404.5931, 2014
|
35 |
Jin C, Zhang J, Li X, Yang X K, Yang X Y, Li J J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442
|
36 |
Wang Q, Yu Y, Pan K Q, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Transactions on Biomedical Engineering, 2014, 61(7): 2161–2166
|
37 |
Lu Y, Hu Q Y, Lin Y L, Pacardo D, Wang C, Sun W J, Ligler F S, Dickey M D, Gu Z. Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6: 10066
|
38 |
Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2016, 4(32): 5349–5357
|
39 |
Jeong S H, Hagman A, Hjort K, Jobs M, Sundqvist J, Wu Z. Liquid alloy printing of microfluidic stretchable electronics. Lab on a Chip, 2012, 12(22): 4657–4664
|
40 |
Tabatabai A, Fassler A, Usiak C, Majidi C. Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir, 2013, 29(20): 6194–6200
|
41 |
Gozen B A, Tabatabai A, Ozdoganlar O B, Majidi C. High-density soft-matter electronics with micron-scale line width. Advanced Materials, 2014, 26(30): 5211–5216
|
42 |
Wang L, Liu J. Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Science China. Technological Sciences, 2014, 57(9): 1721–1728
|
43 |
Wang L, Liu J. Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Science China, Technological Sciences, 2014, 57(11): 2089–2095
|
44 |
Zhang J, Yao Y Y, Sheng L, Liu J. Self-fueled biomimetic liquid metal mollusk. Advanced Materials, 2015, 27(16): 2648–2655
|
45 |
Tan S C, Yuan B, Liu J. Electrical method to control the running direction and speed of self-powered tiny liquid metal motors. Proceedings–Royal Society. Mathematical, Physical and Engineering Sciences, 2015, 471(2183): 20150297
|
46 |
Tan S C, Gui H, Yuan B, Liu J. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Applied Physics Letters, 2015, 107(7): 071904
|
47 |
Tang X, Tang S Y, Sivan V, Zhang W, Mitchell A, Kalantarzadeh K, Khoshmanesh K. Photochemically induced motion of liquid metal marbles. Applied Physics Letters, 2013, 103(17): 174104
|
48 |
Zavabeti A, Daeneke T, Chrimes A F, O’Mullane A P, Ou J Z, Mitchell A, Khoshmanesh K, Kalantar-zadeh K. Ionic imbalance induced self-propulsion of liquid metals. Nature Communications, 2016, 7: 12402
|
49 |
Mei S F, Gao Y X, Li H Y, Deng Z S, Liu J. Thermally induced porous structures in printed gallium coating to make transparent conductive film. Applied Physics Letters, 2013, 102(4): 041905
|
50 |
Doudrick K, Liu S, Mutunga E M, Klein K L, Damle V, Varanasi K K, Rykaczewski K. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir, 2014, 30(23): 6867–6877
|
51 |
Regan M J, Tostmann H, Pershan P S, Magnussen O M, Dimasi E, Ocko B M, Deutsch M. X-ray study of the oxidation of liquid-gallium surfaces. Physical Review B: Condensed Matter and Materials Physics, 1997, 55(16): 10786–10790
|
52 |
Regan M J, Pershan P S, Magnussen O M, Ocko B M, Deutsch M, Berman L E. X-ray reflectivity studies of liquid metal and alloy surfaces. Physical Review B: Condensed Matter, 1997, 55(23): 15874–15884
|
53 |
Cademartiri L, Thuo M M, Nijhuis C A, Reus W F, Tricard S, Barber J R, Sodhi R N S, Brodersen P, Kim C, Chiechi R C, Whitesides G M. Electrical resistance of AgTS–S(CH2)n–1CH3//Ga2O3/EGaIn tunneling junctions. Journal of Physical Chemistry C, 2012, 116(20): 10848–10860
|
54 |
Ilyas N, Butcher D P, Durstock M F, Tabor C E. Ion exchange membranes as an interfacial medium to facilitate gallium liquid metal alloy mobility. Advanced Materials Interfaces, 2016, 3(9): 1500665
|
55 |
Tang J, Zhou Y, Liu J, Wang J, Zhu W. Liquid metal actuated ejector vacuum system. Applied Physics Letters, 2015, 106(3): 031901
|
56 |
Baldwin M J, Lynch T, Chousal L, Seraydarian R P, Doerner R P, Luckhardt S C. An injector device for producing clean-surface liquid metal samples of Li, Ga and Sn–Li in vacuum. Fusion Engineering and Design, 2004, 70(2): 107–113
|
57 |
Liu T, Sen P, Kim C J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. Journal of Microelectromechanical Systems, 2012, 21(2): 443–450
|
58 |
Zhang Q, Gao Y X, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Applied Physics A, 2014, 116: 1091–1097
|
59 |
Gao Y X, Liu J. Gallium-based thermal interface material with high complianceand wettability. Applied Physics A, Materials Science & Processing, 2012, 107(3): 701–708
|
60 |
Esinenco D, Codreanu I, Rebigan R. Design of inkjet printing head, based on electrowetting effect, for printable electronics applications. In: International Semiconductor Conference, Sinaia, Romania: IEEE, 2006, 2: 443–446
|
61 |
Semenchenko V K. Surface Phenomena in Metals and Alloys.Oxford: Pergamon Press, 1962
|
62 |
Chacon E, Flores F, Navascues G. A theory for liquid metal surface tension. Journal of Physics F: Metal Physics, 1984, 14(7): 1587–1601
|
63 |
Safran S A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Vol. 90. New York: Perseus Books, 1994
|
64 |
Mersmann A. Calculation of interfacial tensions. Journal of Crystal Growth, 1990, 102(4): 841–847
|
65 |
Jain T S, De Pablo J J. Calculation of interfacial tension from density of states. Journal of Chemical Physics, 2003, 118(9): 4226–4229
|
66 |
Digilov R M. Semi-empirical model for prediction of crystal–melt interfacial tension. Surface Science, 2004, 555(1–3): 68–74
|
67 |
Nino-Amezquita O G, Enders S, Jaeger P T, Eggers R. Measurement and prediction of interfacial tension of binary mixtures. Industrial & Engineering Chemistry Research, 2010, 49(2): 592–601
|
68 |
Gloor G J, Jackson G, Blas F, Del Rio E M, De Miguel E. Prediction of the vapor-liquid interfacial tension of nonassociating and associating fluids with the SAFT-VR density functional theory. Journal of Physical Chemistry C, 2007, 111(43): 15513–15522
|
69 |
Barrett J C. Some estimates of the surface tension of curved surfaces using density functional theory. Journal of Chemical Physics, 2006, 124(14): 144705
|
70 |
Fu D, Lu J F, Liu J C, Li Y G. Prediction of interfacial tension for binary liquid-liquid systems based on density functional theory. Journal of Chemical Industry and Engineering, 2002, 53(9): 892–898
|
71 |
Telo Da Gama M, Evans R, Sluckin T. The structure and surface tension of the liquid-vapour interface of a model of a molten salt. Molecular Physics, 1980, 41(6): 1355–1372
|
72 |
Weeks J D. Structure and thermodynamics of the liquid–vapor interface. Journal of Chemical Physics, 1977, 67(7): 3106–3121
|
73 |
Johnson M, Nordholm S. Generalized van der Waals theory. VI. Application to adsorption. Journal of Chemical Physics, 1981, 75(4): 1953–1957
|
74 |
Ho P S, Kwok T. Electromigration in metals. Reports on Progress in Physics, 1989, 52(3): 301–348
|
75 |
Pai S T, Marton J P. Electromigration in metals. Canadian Journal of Physics, 1977, 55(2): 103–115
|
76 |
Beni G, Hackwood S, Jackel J L. Continuous electrowetting effect. Applied Physics Letters, 1982, 40(10): 912–914
|
77 |
Gongadze E, Van R U, Iglič A. Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cellular & Molecular Biology Letters, 2011, 16(4): 576–594
|
78 |
Grahame D C. Electrode processes and the electrical double layer. Annual Review of Physical Chemistry, 1955, 6(1): 337–358
|
79 |
Daywitt W C. The electron-vacuum coupling force in the Dirac electron theory and its relation to the zitterbewegung. Progress in Physics, 2013, 3: 25–28
|
80 |
Enderby J, March N. Electron theory of metals and liquid state theory. Advances in Physics, 1967, 16(64): 691–702
|
81 |
Scatchard G.The Gibbs adsorption isotherm 1. Journal of physical chemistry, 1962, 66(4): 618–620
|
82 |
Lippmann G. Relationship between the electric and capillary phenomena. Gauthier-Villars, 1875 (in French)
|
83 |
Quinn A, Sedev R, Ralston J. Contact angle saturation in electrowetting. Journal of Physical Chemistry B, 2005, 109(13): 6268–6275
|
84 |
Nogi K, Ogino K, McLean A, Miller W A. The temperature coefficient of the surface tension of pure liquid metals. Metallurgical Transactions B, Process Metallurgy, 1986, 17(1): 163–170
|
85 |
Keene B J. Review of data for the surface tension of pure metals. International Materials Reviews, 1993, 38(4): 157–192
|
86 |
Wikipedia. Surface tension. 2016-11-13
|
87 |
Lu H M, Jiang Q. Surface tension and its temperature coefficient for liquid metals. Journal of Physical Chemistry B, 2005, 109(32): 15463–15468
|
88 |
Dayal B. Surface tension and melting point. Nature, 1952, 169(4311): 1010
|
89 |
Xiao G. An empirical formula between the surface tensions and the melting points for metals. Jiangxi Science, 1987, 5(4): 31–35 (in Chinese)
|
90 |
Ceotto D. Empirical equation for predicting the surface tension of some liquid metals at their melting point. Russian Journal of Physical Chemistry, 2014, 88(7): 1269–1272
|
91 |
Aqra F, Ayyad A. Surface energies of metals in both liquid and solid states. Applied Surface Science, 2011, 257(15): 6372–6379
|
92 |
Arafune K, Sugiura M, Hirata A. Investigation of thermal Marangoni convection in low- and high-Prandtl-number fluids. Journal of Chemical Engineering of Japan, 1999, 32(1): 104–109
|
93 |
Eustathopoulos N, Drevet B, Ricci E. Temperature coefficient of surface tension for pure liquid metals. Journal of Crystal Growth, 1998, 191(1–2): 268–274
|
94 |
Kobatake H, Brillo J, Schmitz J, Pichon P Y. Surface tension of binary Al–Si liquid alloys. Journal of Materials Science, 2015, 50(9): 3351–3360
|
95 |
Scheller P R. Surface effects and flow conditions in small volume melts with varying sulphur content. Steel Research, 2001, 72(3): 76–80
|
96 |
Yu J J, Ruan D F, Li Y R, Chen J C. Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient. Experimental Thermal and Fluid Science, 2015, 61: 79–86
|
97 |
Zhang Q Z, Peng L, Wang F, Liu J. Thermocapillary convection with bidirectional temperature gradients in a shallow annular pool of silicon melt: effects of ambient temperature and pool rotation. International Journal of Heat and Mass Transfer, 2016, 101: 354–364
|
98 |
Wikipedia. Marangoni effect. https://en.wikipedia.org/wiki/Marangoni_effect. 2016-10-16
|
99 |
Alchagirov B B, Mozgovoi A G. The surface tension of molten gallium at high temperatures. High Temperature, 2005, 43(5): 791–792
|
100 |
Alchagirov B B, Dadashev R K, Dyshekova F F, Elimkhanov D Z. Temperature dependence of the surface tension of indium. Russian Journal of Physical Chemistry A, 2013, 87(6): 890–894
|
101 |
Alchagirov A B, Alchagirov B B, Khokonov K B. A device for the study of the surface tension of liquid metal solutions with an increased elasticity of intrinsic vapors. Instruments and Experimental Techniques, 2003, 46(3): 413–415
|
102 |
Ozawa S, Takahashi S, Suzuki S, Sugawara H, Fukuyama H. Relationship of surface tension, oxygen partial pressure, and temperature for molten iron. Japanese Journal of Applied Physics, 2011, 50(11S): 11R05
|
103 |
Ozawa S, Takahashi S, Watanabe N, Fukuyama H. Influence of oxygen adsorption on surface tension of molten nickel measured under reducing gas atmosphere. International Journal of Thermophysics, 2014, 35(9–10): 1705–1711
|
104 |
Aqra F, Ayyad A. Surface tension of pure liquid bismuth and its temperature dependence: theoretical calculations. Materials Letters, 2011, 65(4): 760–762
|
105 |
Aqra F, Ayyad A. Theoretical temperature-dependence surface tension of pure liquid gold. Materials Letters, 2011, 65(14): 2124–2126
|
106 |
Dubberstein T, Heller H P. Surface tension and density of liquid gold, silver, and tin. High Temperatures–High Pressures, 2015, 44(5): 393–406
|
107 |
Yakimovich K A, Mozgovoi A G. Experimental investigation of the density and surface tension of molten lithium at temperatures up to 1300 K. High Temperature, 2000, 38(4): 657–659
|
108 |
Fima P, Nowak R, Sobczak N. Effect of metal purity and testing procedure on surface tension measurements of liquid tin. Journal of Materials Science, 2010, 45(8): 2009–2014
|
109 |
Ricci E, Arato E, Passerone A, Costa P. Oxygen tensioactivity on liquid-metal drops. Advances in Colloid and Interface Science, 2005, 117(1–3): 15–32
|
110 |
Fima P. Surface tension and density of liquid Sn–Ag alloys. Applied Surface Science, 2011, 257(8): 3265–3268
|
111 |
Fima P. Surface tension and density of liquid Sn–Cu alloys. Applied Surface Science, 2010, 257(2): 468–471
|
112 |
Aqra F, Ayyad A, Takrori F. Model calculation of the surface tension of liquid Ga–Bi alloy. Applied Surface Science, 2011, 257(8): 3577–3580
|
113 |
Ricci E, Nanni L, Vizza M, Passerone A. Dynamic surface tension measurements of liquid metals in the presence of oxygen. In: International conference on high temperature capillarity HTC, Krakow, Poland: Foundry Research Institute,1997: 188–193
|
114 |
Ozawa S, Morohoshi K, Hibiya T, Fukuyama H. Influence of oxygen partial pressure on surface tension of molten silver. Journal of Applied Physics, 2010, 107(1): 014910
|
115 |
Heiple C R. Mechanism for minor element effect on GTA fusion zone geometry. Welding Journal, 1982, 61(4): 97–102
|
116 |
Alchagirov B B, Dadashev R K, Dyshekova F F, Elimkhanov D Z. The surface tension of indium: methods and results of investigations. High Temperature, 2014, 52(6): 920–938
|
117 |
Yuan Z F, Mukai K, Takagi K, Ohtaka M, Huang W L, Liu Q S. Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures. Journal of Colloid and Interface Science, 2002, 254(2): 338–345
|
118 |
Fiori L, Ricci E, Arato E. Dynamic surface tension measurements on molten metal-oxygen systems: model validation on molten tin. Acta Materialia, 2003, 51(10): 2873–2890
|
119 |
Giuranno D, Ricci E, Arato E, Costa P. Dynamic surface tension measurements of an aluminium–oxygen system. Acta Materialia, 2006, 54(10): 2625–2630
|
120 |
Ricci E, Lanata T, Giuranno D, Arato E. The effective oxidation pressure of indium-oxygen system. Journal of Materials Science, 2008, 43(9): 2971–2977
|
121 |
Ricci E, Ratto M, Arato E, Costa P, Passerone A. A theoretical approach for the interpretation of liquid metal surface tension measurements in the presence of oxygen. Transactions of the Iron & Steel Institute of Japan, 2000, 40 (Suppl): S139–S143
|
122 |
Ghetta V, Fouletier J, Chatain D. Oxygen adsorption isotherms at the surfaces of liquid Cu and Au-Cu alloys and their interfaces with Al2O3 detected by wetting experiments. Acta Materialia, 1996, 44(5): 1927–1936
|
123 |
Yuan Z, Fan J, Li J, Ke J, Mukai K. Surface tension of molten bismuth at different oxygen partial pressure with the sessile drop method. Scandinavian Journal of Metallurgy, 2004, 33(6): 338–346
|
124 |
Abbasi M, Lee J, Shin M, Kim Y, Kang Y. Effect of oxygen adsorption on surface tension of liquid copper: experiments and thermodynamic models. Applied Surface Science, 2014, 313: 116–122
|
125 |
Kasama A, Mclean A, Miller W A, Morita Z, Ward M J. Surface tension of liquid iron and iron-oxygen alloys. Canadian Metallurgical Quarterly, 1983, 22(1): 9–17
|
126 |
Morohoshi K, Uchikoshi M, Isshiki M, Fukuyama H. Surface tension of liquid iron as functions of oxygen activity and temperature. ISIJ International, 2011, 51(10): 1580–1586
|
127 |
SanSoucieM P, Rogers J R, Kumar V, Rodriguez J, Xiao X, Matson D M. Effects of environmental oxygen content and dissolved oxygen on the surface tension and viscosity of liquid nickel. International Journal of Thermophysics, 2016, 37: 76
|
128 |
Fiori L, Ricci E, Arato E, Costa P. Dynamic surface tension measurements on a molten metal-oxygen system: the behaviour of the temperature coefficient of the surface tension of molten tin. Journal of Materials Science, 2005, 40(9): 2155–2159
|
129 |
Ricci E, Passerone A, Joud J C. Thermodynamic study of adsorption in liquid metal-oxygen systems. Surface Science, 1988, 206(3): 533–553
|
130 |
Shebzukhova M A, Shebzukhov Z A, Shebzukhov A A. The Tolman parameter, self-absorption, and surface tension on flat and curved surfaces of liquid metals. Bulletin of the Russian Academy of Sciences. Physics, 2010, 74(5): 697–704
|
131 |
Tolman R C. The effect of droplet size on surface tension. Journal of Chemical Physics, 1949, 17(3): 333–337
|
132 |
Lu H M, Jiang Q. Size dependent surface energy and surface tension. In: IEEE Conference on Emerging Technologies-Nanoelectronics, Singapore: IEEE, 2006: 21–24
|
133 |
Shebzukhova M A, Shebzukhov A A. Surface energy and surface tension of liquid metal nanodrops. EPJ Web of Conferences. EDP Sciences, 2011, 15: 01027
|
134 |
Vinš V, Fransen M, Hykl J, Hrubý J. Surface tension of supercooled water determined by using a counterpressure capillary rise method. Journal of Physical Chemistry B, 2015, 119(17): 5567–5575
|
135 |
Ghatee M H, Ghazipour H. Highly accurate liquid–liquid interfacial tension measurement by a convenient capillary apparatus. Fluid Phase Equilibria, 2014, 377: 76–81
|
136 |
Luo R, Zhang D, Zeng Z, Lytton R L. Effect of surface tension on the measurement of surface energy components of asphalt binders using the Wilhelmy plate method. Construction & Building Materials, 2015, 98: 900–909
|
137 |
Součková M, Klomfar J, Pátek J. Surface tension of 1-alkyl-3-methylimidazolium based ionic liquids with trifluoromethanesulfonate and tetrafluoroborate anion. Fluid Phase Equilibria, 2011, 303(2): 184–190
|
138 |
Klomfar J, Součková M, Pátek J. Surface tension measurements with validated accuracy for four 1-alkyl-3-methylimidazolium based ionic liquids. Journal of Chemical Thermodynamics, 2010, 42(3): 323–329
|
139 |
Alkindi A S, Alwahaibi Y M, Muggeridge A H. Physical properties (density, excess molar volume, viscosity, surface tension, and refractive index) of ethanol+ glycerol. Journal of Chemical & Engineering Data, 2008, 53(12): 2793–2796
|
140 |
Fainerman V B, Miller R, Joos P. The measurement of dynamic surface tension by the maximum bubble pressure method. Colloid & Polymer Science, 1994, 272(6): 731–739
|
141 |
Fainerman V B, Kazakov V N, Lylyk S V, Makievski A V, Miller R. Dynamic surface tension measurements of surfactant solutions using the maximum bubble pressure method — limits of applicability. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2004, 250(1–3): 97–102
|
142 |
Sangiorgi R, Muolo M L, Chatain D, Eustathopoulos N. Wettability and work of adhesion of nonreactive liquid metals on silica. Journal of the American Ceramic Society, 1988, 71(9): 742–748
|
143 |
Man K F. Surface tension measurements of liquid metals by the quasi-containerless pendant drop method. International Journal of Thermophysics, 2000, 21(3): 793–804
|
144 |
Vinet B, Garandet J P, Cortella L. Surface tension measurements of refractory liquid metals by the pendant drop method under ultrahigh vacuum conditions: extension and comments on Tate’s law. Journal of Applied Physics, 1993, 73(8): 3830–3834
|
145 |
Keene B J, Mills K C, Brooks R F. Surface properties of liquid metals and their effects on weldability. Materials Science and Technology, 1985, 1(7): 559–567
|
146 |
Takiguchi H, Nagasaka Y. Development of near-infrared laser-induced capillary wave method to measure viscosity and surface tension. Transactions of the Japan Society of Mechanical Engineers, 2013, 79(800): 690–700
|
147 |
Osada R, Hoshino T, Okada K, Ohmasa Y, Yao M. Surface tension of room temperature ionic liquids measured by dynamic light scattering. Journal of Chemical Physics, 2009, 130(18): 184705
|
148 |
Korkmaz S D, Korkmaz Ş. Investigation of surface properties of liquid transition metals: surface tension and surface entropy. Applied Surface Science, 2010, 257(1): 261–265
|
149 |
Bashforth F, Adams J C. An Attempt to Test the Theories of Capillary Action: by Comparing the Theoretical and Measured Forms of Drops of Fluid with an Explanation of the Method of Integration Employed in Constucting the Tables Which Give the Theoretical Forms of Such Drops. Cambridge: Cambridge University Press, 1883
|
150 |
Andreas J, Hauser E, Tucker W. Boundary tension by pendant drops 1. Journal of Physical Chemistry, 1938, 42(8): 1001–1019
|
151 |
Schaefers K, Kuppermann G, Thiedemann U, Qin J, Frohberg M. A new variant for measuring the surface tension of liquid metals and alloys by the oscillating drop method. International Journal of Thermophysics, 1996, 17(5): 1173–1179
|
152 |
Pichon E, Nain D. A Laplace equation approach for shape comparison. Proceedings of SPIE–The International Society for Optics and Photonics, 2006, 6141: 614119
|
153 |
Naidich J V. The wettability of solids by liquid metals. Progress in Surface & Membrane Science, 1981, 14: 353–484
|
154 |
Lee J, Kiyose A, Nakatsuka S, Nakamoto M, Tanaka T. Improvements in surface tension measurements of liquid metals having low capillary constants by the constrained drop method. ISIJ International, 2004, 44(11): 1793–1799
|
155 |
Plevachuk Y, Sklyarchuk V, Gerbeth G, Eckert S, Novakovic R. Surface tension and density of liquid Bi–Pb, Bi–Sn and Bi–Pb–Sn eutectic alloys. Surface Science, 2011, 605(11–12): 1034–1042
|
156 |
Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A. Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering A, 2008, 495(12): 43–49
|
157 |
Liggieri L, Passerone A. An automatic technique for measuring the surface tension of liquid metals. High Temperature Technology, 1989, 7(2): 82–86
|
158 |
Maze C, Burnet G. A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop. Surface Science, 1969, 13(2): 451–470
|
159 |
Aune R, Seetharaman S, Battezzati L, Egry I, Schmidt-Hohagen F, Etay J, Fecht H J, Wunderlich R, Passerone A, Ricci E, Novakovic R, Giuranno D. Surface tension measurements of Al-Ni based alloys from ground-based and parabolic flight experiments: results from the ThermoLab project. Microgravity Science and Technology, 2006, 18: 73
|
160 |
Egry I, Brooks R, Hollandmoritz D, Novakovic R, Matsushita T, Ricci E, Seetharaman S, Wunderlich R, Jarvis D. Thermophysical properties of γ-titanium aluminide: the European IMPRESS Project. International Journal of Thermophysics, 2007, 28(3): 1026–1036
|
161 |
Kucharski M, Fima P, Skrzyniarz P, Przebinda-Stefanowa W. Surface tension and density of Cu-Ag, Cu-In and Ag-In alloys. Archives of Metallurgy and Materials, 2006, 51(3): 389–397
|
162 |
Plevachuk Y, Hoyer W, Kaban I, Köhler M, Novakovic R. Experimental study of density, surface tension, and contact angle of Sn-Sb-based alloys for high temperature soldering. Journal of Materials Science, 2010, 45(8): 2051–2056
|
163 |
Lee J, Le T H, Shin M. Density and surface tension of liquid Fe-Mn alloys. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 2011, 42(3): 546–549
|
164 |
Brillo J, Plevachuk Y, Egry I. Surface tension of liquid Al–Cu–Ag ternary alloys. Journal of Materials Science, 2010, 45(19): 5150–5157
|
165 |
Willner J, Siwiec G, Botor J. The surface tension of liquid Cu–Fe–Sb alloys. Applied Surface Science, 2010, 256(9): 2939–2943
|
166 |
Guo Z, Hindler M, Yuan W, Mikula A. The density and surface tension of In–Sn and Cu–In–Sn alloys. Monatshefte für Chemie-Chemical Monthly, 2011, 142(6): 579–584
|
167 |
Guo Z N, Li S, Mikula A, Yuan W X. Surface tension of liquid Au-Bi-Sn alloys. Rare Metals, 2012, 31(3): 250–254
|
168 |
Chentsov V P, Shevchenko V G, Mozgovoi A G, Pokrasin M A. Density and surface tension of heavy liquid-metal coolants: Gallium and indium. Inorganic Materials: Applied Research, 2011, 2(5): 468–473
|
169 |
Novakovic R, Ricci E, Giuranno D, Passerone A. Surface and transport properties of Ag–Cu liquid alloys. Surface Science, 2005, 576(1–3): 175–187
|
170 |
Egry I, Hollandmoritz D, Novakovic R, Ricci E, Wunderlich R, Sobczak N. Thermophysical properties of liquid AlTi-based alloys. International Journal of Thermophysics, 2010, 31(4): 949–965
|
171 |
Nowak R, Lanata T, Sobczak N, Ricci E, Giuranno D, Novakovic R, Hollandmoritz D, Egry I. Surface tension of γ-TiAl-based alloys. Journal of Materials Science, 2010, 45(8): 1993–2001
|
172 |
Ricci E, Giuranno D, Sobczak N. Further development of testing procedures for high temperature surface tension measurements. Journal of Materials Engineering and Performance, 2013, 22(11): 3381–3388
|
173 |
Amore S, Giuranno D, Novakovic R, Ricci E, Nowak R, Sobczak N. Thermodynamic and surface properties of liquid Ge-Si alloys. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2014, 44(1): 95–101
|
174 |
Okress E C, Wroughton D M, Comenetz G, Brace P H, Kelly J C R. Electromagnetic levitation of solid and molten metals. Journal of Applied Physics, 1952, 23(5): 545–552
|
175 |
Fraser M E, Lu W K, Hamielec A E, Murarka R. Surface tension measurements on pure liquid iron and nickel by an oscillating drop technique. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1971, 2(3): 817–823
|
176 |
Murarka R, Lu W K, Hamielec A E. Surface tension of pure liquid and supercooled iron. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1971, 2(10): 2949–2950
|
177 |
Murarka R N, Lu W K, Hamielec A E. Effect of dissolved oxygen on the surface tension of liquid iron. Canadian Metallurgical Quarterly, 1975, 14(2): 111–115
|
178 |
Egry I, Ricci E, Novakovic R, Ozawa S. Surface tension of liquid metals and alloys–recent developments. Advances in Colloid and Interface Science, 2010, 159(2): 198–212
|
179 |
Brillo J, Lohöfer G, Schmidt-Hohagen F, Schneider S, Egry I. Thermophysical property measurements of liquid metals by electromagnetic levitation. International Journal of Materials & Product Technology, 2006, 26(3/4): 247–273
|
180 |
Egry I, Lohoefer G, Jacobs G. Surface tension of liquid metals: results from measurements on ground and in space. Physical Review Letters, 1995, 75(22): 4043–4046
|
181 |
Cummings D L, Blackburn D A. Oscillations of magnetically levitated aspherical droplets. Journal of Fluid Mechanics, 1991, 224: 395–416
|
182 |
Brillo J, Egry I, Matsushita T. Density and surface tension of liquid ternary Ni-Cu-Fe alloys. International Journal of Thermophysics, 2006, 97(1): 28–34
|
183 |
Brillo J, Egry I. Surface tension of nickel, copper, iron and their binary alloys. Journal of Materials Science, 2005, 40(9): 2213–2216
|
184 |
Egry I, Brillo J. Surface tension and density of liquid metallic alloys measured by electromagnetic levitation. Journal of Chemical & Engineering Data, 2009, 54(9): 2347–2352
|
185 |
Schmitz J, Brillo J, Egry I. Surface tension of liquid Cu and anisotropy of its wetting of sapphire. Journal of Materials Science, 2010, 45(8): 2144–2149
|
186 |
Brillo J, Kolland G. Surface tension of liquid Al-Au binary alloys. Journal of Materials Science, 2016, 51(10): 4888–4901
|
187 |
Brillo J, Egry I, Westphal J. Density and thermal expansion of liquid binary Al-Ag and Al-Cu alloys. International Journal of Materials Research, 2008, 99(2): 162–167
|
188 |
Brillo J, Lauletta G, Vaianella L, Arato E, Giuranno D, Novakovic R, Ricci E. Surface tension of liquid Ag–Cu binary alloys. Transactions of the Iron & Steel Institute of Japan, 2014, 54(9): 2115–2119
|
189 |
Wunderlich R K, Fecht H J. Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments. International Journal of Materials Research, 2011, 102(9): 1164–1173
|
190 |
Amore S, Brillo J, Egry I, Novakovic R. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling. Applied Surface Science, 2011, 257(17): 7739–7745
|
191 |
Zhou K, Wang H P, Chang J, Wei B. Surface tension measurement of metastable liquid Ti–Al–Nb alloys. Applied Physics A, Materials Science & Processing, 2011, 105(1): 211–214
|
192 |
Chang J, Wang H P, Zhou K, Wei B. Surface tension measurement of undercooled liquid Ni-based multicomponent alloys. Philosophical Magazine Letters, 2012, 92(9): 428–435
|
193 |
Egry I, Lohöfer G, Neuhaus P, Sauerland S. Surface tension measurements of liquid metals using levitation, microgravity, and image processing. International Journal of Thermophysics, 1992, 13(1): 65–74
|
194 |
Egry I. Surface tension measurements of liquid metals by the oscillating drop technique. Journal of Materials Science, 1991, 26(11): 2997–3003
|
195 |
Egry I, Lohoefer G, Schwartz E, Szekely J, Neuhaus P. Surface tension measurements on liquid metals in microgravity. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1998, 29(5): 1031–1035
|
196 |
Ohnishi M, Nagasaka Y. Measurement of surface tension and viscosity of molten lithium niobate by the surface laser-light scattering method. High Temperatures—High Pressures, 2000, 32(1): 103–108
|
197 |
Levich V G. Physicochemical Hydrodynamics. New Jersey: Prentice Hall, 1962
|
198 |
Nagasaka Y, Kobayashi Y. Effect of atmosphere on the surface tension and viscosity of molten LiNbO3 measured using the surface laser-light scattering method. Journal of Crystal Growth, 2007, 307(1): 51–58
|
199 |
Wang F K, Yue H Y, Fan X W, Liu Z G. Surface tension and viscosity measurement with surface laser light scattering method. Thermal Science, 2013, 17(5): 1467–1471
|
200 |
Ayyad A, Aqra F. Theoretical consideration of the anomalous temperature dependence of the surface tension of pure liquid gallium. Theoretical Chemistry Accounts, 2010, 127(5): 443–448
|
201 |
Ayyad A, Mechdiev I, Freyland W. Light scattering study of surface freezing and surface viscoelasticity in a eutectic liquid Ga–Bi alloy. Chemical Physics Letters, 2002, 359(3–4): 326–330
|
202 |
Minami Y. Surface tension measurement of liquid metal with inelastic light-scattering spectroscopy of a thermally excited capillary wave. Applied Physics B, Lasers and Optics, 2014, 117(3): 969–972
|
203 |
Osada R, Hoshino T, Okada K, Ohmasa Y, Yao M. Surface tension of room temperature ionic liquids measured by dynamic light scattering. Journal of Chemical Physics, 2009, 130(18): 184705
|
204 |
Kirby B J. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge: Cambridge University Press, 2010
|
205 |
Chang H C, Yeo L Y. Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge: Cambridge University Press, 2010
|
206 |
Hong J S, Ko S H, Kang K H, Kang I S. A numerical investigation on AC electrowetting of a droplet. Microfluidics and Nanofluidics, 2008, 5(2): 263–271
|
207 |
Berry S, Kedzierski J, Abedian B. Low voltage electrowetting using thin fluoroploymer films. Journal of Colloid and Interface Science, 2006, 303(2): 517–524
|
208 |
Shamai R, Andelman D, Berge B, Hayes R. Water, electricity, and between … on electrowetting and its applications. Soft Matter, 2008, 4(1): 38–45
|
209 |
Thomas D, Audry M C, Thibaut R M, Kleimann P, Chassagneux F, Maillard M, Brioude A. Charge injection in dielectric films during electrowetting actuation under direct current voltage. Thin Solid Films, 2015, 590: 224–229
|
210 |
Klarman D, Andelman D, Urbakh M. A model of electrowetting, reversed electrowetting, and contact angle saturation. Langmuir, 2011, 27(10): 6031–6041
|
211 |
Monroe C W, Daikhin L, Urbakh M, Kornyshev A. Electrowetting with an interface between two immiscible electrolytic solutions. In: 210th ECS Meeting. Cancun, Mexico: ECS, 2006: 43
|
212 |
Monroe C W, Daikhin L I, Urbakh M, Kornyshev A A. Electrowetting with electrolytes. Physical Review Letters, 2006, 97(13): 136102
|
213 |
Jones T B, Fowler J D, Chang Y S, Kim C J. Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir, 2003, 19(18): 7646–7651
|
214 |
Kang K H. How electrostatic fields change contact angle in electrowetting. Langmuir, 2002, 18(26): 10318–10322
|
215 |
Mugele F, Baret J C. Electrowetting: from basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774
|
216 |
Sedev R. Electrowetting: electrocapillarity, saturation, and dynamics. European Physical Journal. Special Topics, 2011, 197(1): 307–319
|
217 |
Wang K L, Jones T B. Saturation effects in dynamic electrowetting. Applied Physics Letters, 2005, 86(5): 054104
|
218 |
Shapiro B, Moon H, Garrell R L, Kim C J. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. Journal of Applied Physics, 2003, 93(9): 5794–5811
|
219 |
Yang X H, Tan S C, Yuan B, Liu J. Alternating electric field actuated oscillating behavior of liquid metal and its application. Science China Technological Sciences, 2016, 59(4): 597–603
|
220 |
Tan S C, Zhou Y X, Wang L, Liu J. Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution. Science China Technological Sciences, 2016, 59(2): 301–308
|
221 |
Lee J, Moon H, Fowler J, Schoellhammer T, Kim C J. Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors and Actuators A: Physical, 2002, 95(2–3): 259–268
|
222 |
Yun K S, Cho I J, Bu J U, Kim C J. A surface-tension driven micropump for low-voltage and low-power operations. Journal of Microelectromechanical Systems, 2002, 11(5): 454–461
|
223 |
Lee J, Kim C J C. Liquid micromotor driven by continuous electrowetting. In: Proceedings of 11th Annual International Workshop on Micro Electro Mechanical Systems. Heidelberg, Germany: IEEE, 1998: 538–543
|
224 |
Lee H J, Kim C J. Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems, 2000, 9(2): 171–180
|
225 |
Ni J, Zhong C J, Coldiron S J, Porter M D. Electrochemically actuated mercury pump for fluid flow and delivery. Analytical Chemistry, 2001, 73(1): 103–110
|
226 |
Pollack M G, Fair R B, Shenderov A D. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 2000, 77(11): 1725–1726
|
227 |
Yi U C, Kim C J. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. Journal of Micromechanics and Microengineering, 2006, 16(10): 2053–2059
|
228 |
Accardo A, Mecarini F, Leoncini M, Brandi F, Di Cola E, Burghammer M, Riekel C, Di Fabrizio E. Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface. Lab on a Chip, 2013, 13(3): 332–335
|
229 |
Krupenkin T, Taylor J A. Reverse electrowetting as a new approach to high-power energy harvesting. Nature Communications, 2011, 2: 448
|
230 |
Moon J K, Jeong J, Lee D, Pak H K. Electrical power generation by mechanically modulating electrical double layers. Nature Communications, 2013, 4: 1487
|
231 |
Thramann J. Generation of electrical energy in a ski or snowboard. US Patent No. 9024462, 2015
|
232 |
Berge B, Peseux J. Variable focal lens controlled by an external voltage: an application of electrowetting. European Physical Journal E, 2000, 3(2): 159–163
|
233 |
Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras. Applied Physics Letters, 2004, 85(7): 1128–1130
|
234 |
Hayes R A, Feenstra B J. Video-speed electronic paper based on electrowetting. Nature, 2003, 425(6956): 383–385
|
235 |
You H, Steckl A J. Three-color electrowetting display device for electronic paper. Applied Physics Letters, 2010, 97(2): 023514
|
236 |
Feenstra B J, Hayes R A, Van Dijk R, Boom R G H. Electrowetting-based displays: bringing microfluidics alive on-screen. In:19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul, Turkey: IEEE, 2006: 48–53
|
237 |
Fair R B, Khlystov A, Tailor T D, Ivanov V, Evans R D, Srinivasan V, Pamula V K, Pollack M G, Griffin P B, Zhou J. Chemical and biological applications of digital-microfluidic devices. IEEE Design & Test of Computers, 2007, 24(1): 10–24
|
238 |
Cho S K, Moon H, Kim C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003, 12(1): 70–80
|
239 |
Yu Y, Wang Q, Yi L, Liu J. Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Advanced Engineering Materials, 2014, 16(2): 255–262
|
240 |
Sheng L, He Z Z, Yao Y Y, Liu J. Transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small, 2015, 11(39): 5253–5261
|
241 |
Gao W, Pei A, Wang J. Water-driven micromotors. ACS Nano, 2012, 6(9): 8432–8438
|
242 |
Yuan B, Wang L, Yang X H, Ding Y J, Tan S C, Yi L T, He Z Z, Liu J. Liquid metal machine triggered violin-like wire oscillator. 2016, 3(10): 1600212
|
243 |
Monroe C W, Daikhin L I, Urbakh M, Kornyshev A A. Principles of electrowetting with two immiscible electrolytic solutions. Journal of Physics Condensed Matter, 2006, 18(10): 2837–2869
|
244 |
Grahame D C. The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 1947, 41(3): 441–501
|
245 |
Kornyshev A A, Kucernak A R, Marinescu M, Monroe C W, Sleightholme A E S, Urbakh M. Ultra-low-voltage electrowetting. Journal of Physical Chemistry C, 2010, 114(35): 14885–14890
|
246 |
Yao Y Y, Liu J. Liquid metal wheeled small vehicle for cargo delivery. Royal Scoiety of Chemistry Advances, 2016, 6: 56482–56488
|
247 |
Yuan B, Tan S C, Zhou Y X, Liu J. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Chinese Science Bulletin, 2015, 60(13): 1203–1210
|
248 |
Fang W Q, He Z Z, Liu J. Electro-hydrodynamic shooting phenomenon of liquid metal stream. Applied Physics Letters, 2014, 105(13): 134104
|
249 |
Tang S Y, Lin Y, Joshipura I D, Khoshmanesh K, Dickey M D. Steering liquid metal flow in microchannels using low voltages. Lab on a Chip, 2015, 15(19): 3905–3911
|
250 |
Tang S Y, Sivan V, Khoshmanesh K, O’mullane A P, Tang X, Gol B, Eshtiaghi N, Lieder F, Petersen P, Mitchell A, Kalantar-zadeh K. Electrochemically induced actuation of liquid metal marbles. Nanoscale, 2013, 5(13): 5949–5957
|
251 |
Chrimes A F, Berean K J, Mitchell A, Rosengarten G, Kalantar-Zadeh K. Controlled electrochemical deformation of liquid-phase gallium. ACS Applied Materials & Interfaces, 2016, 8(6): 3833–3839
|
252 |
Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Advanced Materials, 2014, 26(34): 6036–6042
|
253 |
Wang L, Liu J. Liquid metal folding patterns induced by electric capillary force. Applied Physics Letters, 2016, 108(16): 161602
|
254 |
Mohammed M, Sundaresan R, Dickey M D. Self-running liquid metal drops that delaminate metal films at record velocities. ACS Applied Materials & Interfaces, 2015, 7(41): 23163–23171
|
255 |
Hirsch A, Michaud H O, Gerratt A P, De Mulatier S V, Lacour S P. Intrinsically stretchable biphasic (solid–liquid) thin metal films. Advanced Materials, 2016, 28(22): 4507–4512
|
256 |
Zheng Y, He Z Z, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Scientific Reports, 2014, 4: 4588
|
257 |
Zheng Y, He Z Z, Gao Y X, Liu J. Direct desktop printed-circuits-on-paper flexible electronics. Scientific Reports, 2013, 3: 1786
|
258 |
Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Advanced Materials, 2015, 27(44): 7109–7116
|
259 |
Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Advances, 2013, 3(11): 112117
|
260 |
Gao Y X, Li H Y, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One, 2012, 7(9): e45485
|
261 |
Yu Y, Zhang J, Liu J. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS One, 2013, 8(3): e58771
|
262 |
Guo C R, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2014, 2(35): 5739–5745
|
263 |
Zrnic D, Swatik D. On the resistivity and surface tension of the eutectic alloy of gallium and indium. Journal of the Less Common Metals, 1969, 18(1): 67–68
|
264 |
Dickey M D, Chiechi R C, Larsen R J, Weiss E A, Weitz D A, Whitesides G M. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 2008, 18(7): 1097–1104
|
265 |
Boley J W, White E L, Chiu G T C, Kramer R K. Direct writing of gallium-indium alloy for stretchable electronics. Advanced Functional Materials, 2014, 24(23): 3501–3507
|
266 |
Xu Q, Oudalov N, Guo Q, Jaeger H M, Brown E. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Physics of Fluids, 2012, 24(6): 063101
|
267 |
Larsen R J, Dickey M D, Whitesides G M, Weitz D A. Viscoelastic properties of oxide-coated liquid metals. Journal of Rheology (New York, N.Y.), 2009, 53(6): 1305–1326
|
268 |
Jin C, Zhang J, Li X K, Yang X Y, Li J J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442
|
269 |
Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Scientific Reports, 2014, 4: 7116
|
270 |
Gough R C, Dang J H, Moorefield M R, Zhang G B, Hihara L H, Shiroma W A, Ohta A T. Self-actuation of liquid metal via redox reaction. ACS Applied Materials & Interfaces, 2016, 8(1): 6–10
|
271 |
Shen W, Edwards R T, Kim C J. Electrostatically actuated metal-droplet microswitches integrated on CMOS chip. Journal of Microelectromechanical Systems, 2006, 15(4): 879–889
|
272 |
Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z. 25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress. Advanced Materials, 2013, 25(42): 5997–6038
|
273 |
Park Y L, Chen B R, Wood R J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sensors Journal, 2012, 12(8): 2711–2718
|
274 |
Kramer R K, Majidi C, Wood R J. Wearable tactile keypad with stretchable artificial skin. In: IEEE International Conference on Robotics & Automation, IEEE, 2011: 1103–1107
|
275 |
Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Advanced Materials, 2014, 26(1): 149–162
|
276 |
Hu L, Wang L, Ding Y J, Zhan S H, Liu J. Manipulation of liquid metals on a graphite surface. Advanced Materials, 2016, 28(41): 9210–9217
|
/
〈 |
|
〉 |