Potential hybrid feedstock for biodiesel production in the tropics
Received date: 24 Jul 2015
Accepted date: 06 Nov 2015
Published date: 07 Sep 2016
Copyright
Recently, mixture of different oils at various proportions have been used as feedstock for biodiesel production. The primary aim is to improve fuel properties which are strongly influenced by the fatty acid composition of the individual oil that makes up the feedstock mix. The tropics are renowned for abundant oil-bearing crops of which palm kernel oil (PKO) from palm seed and groundnut oil (GNO) are prominent. This present paper investigated biodiesel production from hybrid oil (HO) of PKO (medium carbon chain and highly saturated oil) and GNO (long carbon chain and highly unsaturated oil) at 50/50 (v/v) blending. The principal fatty acids (FAs) in the HO are oleic (35.62%) and lauric acids (24.23%) with 47.80% of saturated FA and 52.26% of unsaturated FA contents. The chemical conversion of the oil to methyl ester (ME) gave 86.56% yield. Fuel properties of hybrid oil methyl ester (the HOME) were determined in accordance with standard test methods and were found to comply with both ASTM D6751 and EN 14214 standards. The oxidative stability, cetane number and kinematic viscosity (KV) of HOME were observed to be improved when compared with those of GNO methyl ester from single parent oil, which could be accredited to the improved FA composition of the HO. The KV (3.69 mm2/s) of HOME obtained in this paper was remarkably low compared with those reported in literature for most biodiesels. This value suggests better flow, atomization, spray and combustion of this fuel. Conclusively, the binary blend of oils can be a viable option to improve the fuel properties of biodiesel feedstock coupled with reduced cost.
Key words: groundnut oil; palm kernel oil; methyl ester; fuel properties; tropics; fatty acid composition
Solomon GIWA , Oludaisi ADEKOMAYA , Collins NWAOKOCHA . Potential hybrid feedstock for biodiesel production in the tropics[J]. Frontiers in Energy, 2016 , 10(3) : 329 -336 . DOI: 10.1007/s11708-016-0408-8
1 |
Balat M, Balat H. Progress in biodiesel processing. Applied Energy, 2010, 87(6): 1815–1835
|
2 |
Giwa S, Ogunbona C. Sweet almond (Prunus amygdalus “dulcis”) seeds as a potential feedstock for Nigerian biodiesel automotive project. Revista Ambiente & Agua, 2014, 9: 37–45
|
3 |
Wakil M A, Kalam M A, Masjuki H H, Atabani A E, Rizwanul Fattah I M. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend. Energy Conversion and Management, 2015, 94: 51–67
|
4 |
Kondamudi N, Strull J, Misra M, Mohapatra S K. A green process for producing biodiesel from feather meal. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6163–6166
|
5 |
Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S. From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel, 2011, 90(4): 1545–1548
|
6 |
Mariod A, Klupsch S, Hussein I H, Ondruschka B. Synthesis of alkyl esters from three unconventional Sudanese oils for their use as biodiesel. Energy & Fuels, 2006, 20(5): 2249–2252
|
7 |
Lin C, Li R. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish. Fuel Processing Technology, 2009, 90(1): 130–136
|
8 |
Alptekin E, Canakci M, Sanli H. Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel, 2012, 95: 214–220
|
9 |
Giwa S, Layeni A, Ogunbona C. Synthesis and characterization of biodiesel from industrial starch production byproduct. Energy and Environmental Engineering Journal, 2012, 1: 45–51
|
10 |
Cao L, Zhang S. Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil. Applied Energy, 2015, 146: 135–140
|
11 |
Giwa S, Abdullah L C, Adam N M. Investigating “egusi” (Citrullus Colocynthis L.) seed oil as potential biodiesel feedstock. Energies, 2010, 3(4): 607–618
|
12 |
Meneghetti S M P, Meneghetti M R, Serra T M, Barbosa D C, Wolf C R. Biodiesel production from vegetable oil mixture: cottonseed, soybean, and castor oil. Energy & Fuels, 2007, 21(6): 3746–3747
|
13 |
Moser B R. Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy & Fuels, 2008, 22(6): 4301–4306
|
14 |
Taravus S, Temur H, Yartasi A. Alkali-catalyzed biodiesel production from mixtures of sunflower oil and beef tallow. Energy & Fuels, 2009, 23(8): 4112–4115
|
15 |
Chen Y H, Chen J H, Chang C Y, Chang C C. Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions. Bioresource Technology, 2010, 101(24): 9521–9526
|
16 |
Serqueira D S, Fernandes D M, Cunha R R, Squissato A L, Santos D Q, Richter E M, Munoz R A A. Influence of blending soybean, sunflower, colza, corn, cottonseed, and residual cooking oil methyl biodiesels on the oxidation stability. Fuel, 2014, 118: 16–20
|
17 |
Lebedevas S, Vaicekauskas A, Lebedeva G, Makareviciene V, Janulis P, Kazancev K. Use of waste fats of animal and vegetable origin for the production of biodiesel fuel: quality, motor properties, and emissions of harmful components. Energy & Fuels, 2006, 20(5): 2274–2280
|
18 |
de Almeida V F, García-Moreno P J, Guadix A, Guadix E M. Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: optimization of fuel properties. Fuel Processing Technology, 2015, 133: 152–160
|
19 |
Freire L M S, Filho J R C, Moura C V R, Soledade L E B, Stragevitch L, Cordeiro A M T M, Santos I M G, Souza A G. Evaluation of the oxidative stability and flow properties of quaternary mixtures of vegetable oils for biodiesel production. Fuel, 2012, 95: 126–130
|
20 |
Sharma Y C, Singh B. A hybrid feedstock for a very efficient preparation of biodiesel. Fuel Processing Technology, 2010, 91(10): 1267–1273
|
21 |
Qiu F, Li Y, Yang D, Li X, Sun P. Biodiesel production from mixed soybean oil and rapeseed oil. Applied Energy, 2011, 88(6): 2050–2055
|
22 |
Chen Y H, Chen J H, Luo Y M. Complementary biodiesel combination from tung and medium-chain fatty acid oils. Renewable Energy, 2012, 44: 305–310
|
23 |
Eze S O O. Physico-chemical properties of oil from some selected underutilized oil seeds available for biodiesel preparation. African Journal of Biotechnology, 2012, 11: 10003–10007
|
24 |
Alamu O J, Waheed M A, Jekayinfa S O, Akintola T A. Optimal transesterification duration for biodiesel production from Nigerian palm kernel oil. Agricultural Engineering International CIGR E-Journal, 2007, 9: 1–11
|
25 |
Kaya C, Hamamci C, Baysal A, Akba O, Erdogan S, Saydut A. Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstockfor biodiesel production. Renewable Energy, 2009, 34(5): 1257–1260
|
26 |
Ibeto C N, Ofoefule A U, Ezeugwu H C. Fuel quality assessment of biodiesel produced from groundnut oil (Arachis hypogea L.) and its blend with petroleum diesel. American Journal Food Technology, 2011, 6(9): 798–803
|
27 |
Moser B R. Biodiesel production, properties, and feedstocks. In Vitro Cell Dev. Biology-Plant, 2009, 45: 229–266
|
28 |
Oyinlola A, Ojo A, Adekoya L O. Development of a laboratory model screw press for peanut oil expression. Journal of Food Engineering, 2004, 64(2): 221–227
|
29 |
Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renewable & Sustainable Energy Reviews, 2000, 4(2): 111–133
|
30 |
Ramos M J, Fernandez C M, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 2009, 100(1): 261–268
|
31 |
Ahmad M, Rashid S, Khan M A, Zafar M, Sultana S, Gulzar S. Optimization of base catalyzed transesterification of peanut oil biodiesel. African Journal of Biotechnology, 2009, 8: 441–446
|
32 |
Gerpen J V. Biodiesel processing and production. Fuel Processing Technology, 2005, 86(10): 1097–1107
|
33 |
Saloua F, Saber C, Hedi Z. Methyl ester of [Maclura pomifera (Rafin.) Schneider] seed oil: Biodiesel production and characterization. Bioresource Technology, 2010, 101(9): 3091–3096
|
34 |
Atapour M, Kariminia H. Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy, 2011, 88(7): 2377–2381
|
35 |
Rashid U, Anwar F, Ansari T M, Arif M, Ahmad M. Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2009, 84(9): 1364–1370
|
36 |
Knothe G, Cermak C S, Evangelista R L. Cuphea oil as source of biodiesel with improved fuel properties caused by high content of methyl decanoate. Energy & Fuels, 2009, 23(3): 1743–1747
|
37 |
Usta N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass and Bioenergy, 2005, 28: 77–86
|
/
〈 | 〉 |