RESEARCH ARTICLE

Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon

  • Yujie DING 1 ,
  • Jing LIU , 2
Expand
  • 1. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

Received date: 26 Jun 2015

Accepted date: 19 Sep 2015

Published date: 29 Feb 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liquid marble successfully avoided being oxygenized by the metal fluid and thus significantly improved its many physical capabilities such as surface tension modification and shape control. The striking behaviors of the composite liquid metal marbles on a substrate at room temperature were experimentally investigated in a high speed imaging way. It was disclosed that such marbles could disintegrate, merge, and even rebound when impacting the substrate, unlike the existing dynamic fluidic behaviors of liquid marble or metal droplet. The mechanisms lying behind these features were preliminarily interpreted. This fundamental finding raised profound multiphase fluid mechanics for understanding the complex liquid composite which was also critical for a variety of practical applications such as liquid metal jet cooling, inkjet printed electronics, 3D printing or metal particle fabrication etc.

Cite this article

Yujie DING , Jing LIU . Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon[J]. Frontiers in Energy, 2016 , 10(1) : 29 -36 . DOI: 10.1007/s11708-015-0388-0

Acknowledgments

This work was partially supported by the Dean’s Research Funding of Chinese Academy of Sciences as well as Beijing Municipality and the National Natural Science Foundation of China (Grant No. 81071225).
1
Aussillous P, Quéré D. Liquid marbles. Nature, 2001, 411(6840): 924–927

DOI

2
Aussillous P, Quéré D. Properties of liquid marbles. Proceedings of the Royal Society A, 2006, 462(2067): 973–999

DOI

3
Bormashenko E, Musin A. Revealing of water surface pollution with liquid marbles. Applied Surface Science, 2009, 255(12): 6429–6431

DOI

4
Tian J, Arbatan T, Li X, Shen W. Liquid marble for gas sensing. Chemical Communications, 2010, 46(26): 4734–4736

DOI

5
Arbatan T, Li L, Tian J, Shen W. Liquid marbles as micro-bioreactors for rapid blood typing. Advanced Healthcare Materials, 2012, 1(1): 80–83

DOI

6
Gao L, McCarthy T J. Ionic liquid marbles. Langmuir, 2007, 23(21): 10445–10447

DOI

7
Dandan M, Erbil H Y. Evaporation rate of graphite liquid marbles: comparison with water droplets. Langmuir, 2009, 25(14): 8362–8367

DOI

8
Sen P, Kim C J. Microscale liquid-metal switches: a review. IEEE Transactions on Industrial Electronics, 2009, 56(4): 1314–1330

DOI

9
Ma K Q, Liu J. Liquid metal cooling in thermal management of computer chip. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384–402

DOI

10
Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PloS One, 2012, 7(9): e45485 (10 pages)

11
Jin C, Zhang J, Li X, Yang X, Li J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442 (7 pages)

12
Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T, Schaefer J A. Viscosity effect on GaInSn studied by XPS. Surface and Interface Analysis, 2004, 36(8): 981–985

DOI

13
Sivan V, Tang S Y, O'Mullane A P, Petersen P, Eshtiaghi N, Kalantar-zadeh K, Mitchell A. Liquid metal marbles. Advanced Functional Materials, 2013, 23(2): 144–152

DOI

14
Morley N B, Burris J, Cadwallader L C, Nornberg M D. GaInSn usage in the research laboratory. Review of Scientific Instruments, 2008, 79(5): 056107

DOI

15
Li H, Mei S, Wang L, Gao Y, Liu J. Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. International Journal of Heat and Fluid Flow, 2014, 47: 1–8

DOI

16
Zrnic D, Swatik D S. On the resistivity and surface tension of the eutectic alloy of gallium and indium. Journal of the Less Common Metals, 1969, 18(1): 67–68

DOI

17
Sheng L, Zhang J, Liu J. Diverse transformation effects of liquid metal among different morphologies. Advanced Materials, 2014, 26(34): 6036–6042

DOI

18
Pasandideh-Fard M, Bhola R, Chandra S, Mostaghimi J. Deposition of tin droplets on a steel plate: simulations and experiments. International Journal of Heat and Mass Transfer, 1998, 41(19): 2929–2945

DOI

19
Chandra S, Avedisian C T. On the collision of a droplet with a solid-surface. Proceedings: Mathematical and Physical Sciences, 1991, 432(1884): 13–41

Outlines

/