RESEARCH ARTICLE

Performance analysis of combined cycle power plant

  • Nikhil DEV ,
  • Rajesh ATTRI
Expand
  • Department of Mechanical Engineering, YMCA University of Science and Technology, Faridabad 121006, India

Received date: 11 Dec 2014

Accepted date: 04 Mar 2015

Published date: 04 Nov 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Combined cycle power plants (CCPPs) are in operation with diverse thermodynamic cycle configurations. Assortment of thermodynamic cycle for scrupulous locality is dependent on the type of fuel available and different utilities obtained from the plant. In the present paper, seven of the practically applicable configurations of CCPP are taken into consideration. Exergetic and energetic analysis of each component of the seven configurations is conducted with the help of computer programming tool, i.e., engineering equation solver (EES) at different pressure ratios. For Case 7, the effects of pressure ratio, turbine inlet temperature and ambient relative humidity on the first and second law is studied. The thermodynamics analysis indicates that the exergy destruction in various components of the combined cycle is significantly affected by the overall pressure ratio, turbine inlet temperature and pressure loss in air filter and less affected by the ambient relative humidity.

Cite this article

Nikhil DEV , Rajesh ATTRI . Performance analysis of combined cycle power plant[J]. Frontiers in Energy, 2015 , 9(4) : 371 -386 . DOI: 10.1007/s11708-015-0371-9

1
Klara J M, Izsak M S, Wherley M R. Advanced power generation: the potential of indirectly-fired combined cycles. ASME Paper, 1995, Paper No. 95-GT-261

2
Solomon P R, Serio M A, Cosgrove J E, Pines D S, Zhao Y, Buggeln R C, Shamroth S J. A coal-fired heat exchanger for an externally fired gas turbine. Journal of Engineering for Gas Turbines and Power, 1996, 118(1): 22–31

DOI

3
McDonald C F, Wilson D G. The utilization of recuperated and regenerated engine cycles for high-efficiency gas turbines in the 21st century. Applied Thermal Engineering, 1996, 16(8–9): 635–653

DOI

4
Jonsson M, Yan J. Humidified gas turbines—a review of proposed and implemented cycles. Energy, 2005, 30(7): 1013–1078

DOI

5
McCarthy S J, Scott I. The WR-21 intercooled recuperated gas turbine engine—operation and integration into the royal navy type 45 destroyer system. Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. Amsterdam, Netherlands, 2002, 977–984

6
Vandervort C L, Bary M R, Stoddard L E, Higgins S T. Externally-fired combined cycle: repowering of existing steam plants. ASME Paper, 1993, Paper No. 93-GT-359

7
Gaggioli R A. The concept of available energy. Chemical Engineering Science, 1961, 16(1–2): 87–96

DOI

8
Dev N, Samsher, Kachhwaha S S, Attri R. Exergy analysis and simulation of a 30 MW cogeneration cycle. Frontiers of Mechanical Engineering, 2013, 8(2): 169–180

DOI

9
Dev N, Samsher, Kachhwaha S S, Attri R. Development of reliability index for combined cycle power plant using graph theoretic approach. Ain Shams Engineering Journal, 2014, 5(1): 193–203

DOI

10
Dev N, Goyal G K, Attri R, Kumar N. Graph theoretic analysis of advance combined cycle power plants alternatives with latest gas turbines. In: Proceedings of ASME 2013 Gas Turbine India Conference (GTINDIA2013). Bangalore, India, 2013

11
Dev N, Samsher, Kachhwaha S S, Attri R. GTA-based framework for evaluating the role of design parameters in cogeneration cycle power plant efficiency. Ain Shams Engineering Journal, 2013, 4(2): 273–284

DOI

12
Dev N, Samsher, Kachhwaha S S, Attri R. GTA modeling of combined cycle power plant efficiency analysis. Ain Shams Engineering Journal, 2015, 6(1): 217–237

Outlines

/