2026-01-15 2026, Volume 20 Issue 1

  • Select all
  • RESEARCH ARTICLE
    Jiayi Li , Shengxi Zhao , Zhiwei Hu , Xuepeng Zhong , Nicolas Alonso-Vante , Jiwei Ma

    The development of low-cost platinum-free electrocatalysts for the oxygen reduction reaction (ORR) is essential for the sustainable energy technologies. In this work, spinel-type LiMn2O4 was chemically modified via proton exchange to systematically investigate the effects of protonation on crystal structure, electronic configuration, and ORR performance. Experimental results reveal that proton exchange not only regulates the lattice parameters and Mn oxidation states, but also enhances surface hydrophilicity and oxygen adsorption capacity, leading to a significant improvement in ORR activity with at a half-wave potential of 0.81 V for pure Mn-based oxide. Physical characterizations and theoretical calculations reveal that protonation optimizes the surface electronic structure by mitigating the over-stabilization of oxygen intermediates on LiMn2O4, thus facilitating the rate-determining step *OH adsorption and improving reaction kinetics. This work establishes proton exchange as a versatile strategy for the construction of Mn-based oxide electrocatalysts containing alkali metals, offering valuable insights for the rational design of non-precious metal catalysts in energy conversion applications.

  • REVIEW ARTICLE
    Changlong Zhu , Xupeng Yan , Peng Liu , Qichen Lu , Lin Hu , Tianyi Zhou , Ruling Huang , Bo Hu , Kexin Zhang , Xiaolong Wang , Dongfang Guo , Shisen Xu , Qinggong Zhu , Buxing Han

    The increasing emission of carbon dioxide (CO2) has intensified global efforts toward its conversion and utilization. Electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising sustainable strategy to address interconnected energy and environmental challenges. Among the various products of CO2 reduction, methanol has attracted significant research attention as both an essential chemical feedstock and a promising renewable energy carrier. This review comprehensively summarizes recent advances in the electrocatalytic conversion of CO2 to methanol, with systematic discussions on fundamental reaction mechanisms and pathways, innovative reactor configurations, diverse catalysts, and auxiliary optimization strategies. Particular emphasis is placed on categorizing and evaluating various catalysts, including mono-/bimetallic catalysts, molecular catalysts, enzyme catalysts, and carbon-based materials, while exploring their structure-activity relationships and performance enhancement strategies for improving methanol selectivity. Furthermore, the techno-economic viability of current processes is analyzed, assessing the cost-effectiveness and commercial potential of electrocatalytic methanol production. Finally, based on current research progress and existing challenges, key research directions are outlined to advance the development of commercially feasible electrocatalytic CO2-to-methanol systems, providing practical guidance for future investigations.