Highlights of mainstream solar cell efficiencies in 2024

Wenzhong Shen, Yixin Zhao, Feng Liu

Front. Energy ››

PDF(537 KB)
PDF(537 KB)
Front. Energy ›› DOI: 10.1007/s11708-025-0985-5
HIGHLIGHTS

Highlights of mainstream solar cell efficiencies in 2024

Author information +
History +

Cite this article

Download citation ▾
Wenzhong Shen, Yixin Zhao, Feng Liu. Highlights of mainstream solar cell efficiencies in 2024. Front. Energy, https://doi.org/10.1007/s11708-025-0985-5

References

[1]
Aberle A G, Glunz S W, Stephens A W. . High efficiency silicon solar cell: Si/SiO2 interface parameters and their impact on device performance. Progress in Photovoltaics: Research and Applications, 1994, 2(4): 265–273
CrossRef Google scholar
[2]
Green M A, Dunlop E D, Yoshita M. . Solar cell efficiency tables (Version 65). Progress in Photovoltaics: Research and Applications, 2025, 33(1): 3–15
CrossRef Google scholar
[3]
Zheng P T, Yang J, Wang Z. . Detailed loss analysis of 24.8% large-area screen-printed n-type solar cell with polysilicon passivating contact. Cell Reports. Physical Science, 2021, 2(10): 100603
CrossRef Google scholar
[4]
Ghosh D K, Bose S, Das G. . Fundamentals, present status and future perspective of TOPCon solar cells: A comprehensive review. Surfaces and Interfaces, 2022, 30: 101917
CrossRef Google scholar
[5]
Huang Y Y, Jain A, Choi W J. . Modeling and understanding of rear junction double-side passivated contact solar cells with selective area TOPCon on front. In: IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021,
CrossRef Google scholar
[6]
Grübel B, Cimiotti G, Schmiga C. . Progress of plated metallization for industrial bifacial TOPCon silicon solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30(6): 615–621
CrossRef Google scholar
[7]
JASolar Technology Co.Ltd. JA Solar’s bycium + cell achieves record-breaking 748.6 mV open-circuit voltage certified by ISFH. 2024–12-16, available at website of PR Newswire
[8]
Trinasolar. Trinasolar unveils i-TOPCon ultra technology, with cell efficiency of 26.58%. 2024-11-28, available at website of Trinasolar
[9]
Wang Q Q, Guo K Y, Gu S W. . Electrical performance, loss analysis, and efficiency potential of industrial-type PERC, TOPCon, and SHJ solar cells: A comparative study. Progress in Photovoltaics: Research and Applications, 2024, 32(12): 889–903
CrossRef Google scholar
[10]
Shen W Z, Ma S, Huang H P. Deep concern about TOPConmodule quality. PV Tech Power, 2024-12-16, available at the website of pv-tech
[11]
Lin H, Yang M, Ru X. . Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nature Energy, 2023, 8(8): 789–799
CrossRef Google scholar
[12]
Trinasolar. Trinasolar sets new n-type solar cell efficiency world record of 27.08%. 2024-12-20, available at website of Trinasolar
[13]
Liu W, Liu Y, Yang Z. . Flexible solar cells based on foldable silicon wafers with blunted edges. Nature, 2023, 617(7962): 717–723
CrossRef Google scholar
[14]
Li Y, Ru X, Yang M. . Flexible silicon solar cells with high power-to-weight ratios. Nature, 2024, 626(7997): 105–110
CrossRef Google scholar
[15]
Wu H, Ye F, Yang M. . Silicon heterojunction back-contact solar cells by laser patterning. Nature, 2024, 635(8039): 604–609
CrossRef Google scholar
[16]
Long W, Yin S, Peng F. . On the limiting efficiency for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2021, 231: 111291
CrossRef Google scholar
[17]
Liu J, He Y, Ding L. . Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature, 2024, 635(8039): 596–603
CrossRef Google scholar
[18]
LONGi Website. LONGi sets a new efficiency world record of 34.6% for silicon-perovskite tandem solar cells. 2024-6-14, available at website of LONGi
[19]
LONGi Website. LONGi sets a new efficiency world record of 30.1% for silicon-perovskite tandem solar cells on a commercialized size. 2024-6-19, available at website of LONGi
[20]
National Renewable Energy Laboratory (NREL) . Best research-cell efficiency. 2024-10-10, available at website of NREL
[21]
DuanC, Zhang K, PengZ, et al. Durable all inorganic perovskite tandem photovoltaics. Nature, 2024, earear, https://doi.org/10.1038/s41586-024-08432-7
[22]
Liu S, Lu Y, Yu C. . Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature, 2024, 628(8007): 306–312
CrossRef Google scholar
[23]
Hu S, Wang J, Zhao P, et al. Steering perovskite precursorsolutions for multijunction photovoltaics. Nature, 2024, early access, https://doi.org/10.1038/s41586-024-08546-y
[24]
Wu J, Torresi L, Hu M. . Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science, 2024, 386(6727): 1256–1264
CrossRef Google scholar
[25]
Qu Z, Zhao Y, Ma F. . Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells. Nature Communications, 2024, 15(1): 8620
CrossRef Google scholar
[26]
Chen H, Liu C, Xu J. . Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science, 2024, 384(6692): 189–193
CrossRef Google scholar
[27]
Liu S, Li J, Xiao W. . Buried interface molecular hybrid for inverted perovskite solar cells. Nature, 2024, 632(8025): 536–542
CrossRef Google scholar
[28]
Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2023. Frontiers in Energy, 2024, 18(1): 8–15
CrossRef Google scholar
[29]
Li S, Xiao Y, Su R. . Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature, 2024, 635(8040): 874–881
CrossRef Google scholar
[30]
Yang Y, Chen H, Liu C. . Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science, 2024, 386(6724): 898–902
CrossRef Google scholar
[31]
Wang X, Li J, Guo R. . Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nature Photonics, 2024, 18(12): 1269–1275
CrossRef Google scholar
[32]
Li J, Liang H, Xiao C. . Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nature Energy, 2024, 9(3): 308–315
CrossRef Google scholar
[33]
Xiao Y, Yang X, Zhu R. . Unlocking interfaces in photovoltaics. Science, 2024, 384(6698): 846–848
CrossRef Google scholar
[34]
Qu G, Cai S, Qiao Y. . Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells. Joule, 2024, 8(7): 2123–2134
CrossRef Google scholar
[35]
Jiang W, Wang D, Shang W. . Spin-coated and vacuum-processed hole-extracting self-assembled multilayers with H-aggregation for high-performance inverted perovskite solar cells. Angewandte Chemie International Edition, 2024, 63(45): e202411730
CrossRef Google scholar
[36]
Zhao K, Liu Q, Yao L. . Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature, 2024, 632(8024): 301–306
CrossRef Google scholar
[37]
Peng W, Zhang Y, Zhou X. . A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells. Energy & Environmental Science, 2025, early access:
[38]
Chen P, Xiao Y, Hu J. . Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature, 2024, 625(7995): 516–522
CrossRef Google scholar
[39]
ZengJ, Liu Z, WangD, et al. Small-molecule hole transport materials for > 26% efficient inverted perovskite solar cells. Journal of the American Chemical Society, 2024, early access, https://doi.org/10.1021/jacs.4c13356
[40]
Ding B, Ding Y, Peng J. . Dopant-additive synergism enhances perovskite solar modules. Nature, 2024, 628(8007): 299–305
CrossRef Google scholar
[41]
Ding Y, Ding B, Shi P. . Cation reactivity inhibits perovskite degradation in efficient and stable solar modules. Science, 2024, 386(6721): 531–538
CrossRef Google scholar
[42]
Wang H, Su S, Chen Y. . Impurity-healing interface engineering for efficient perovskite submodules. Nature, 2024, 634(8036): 1091–1095
CrossRef Google scholar
[43]
Liu X, Zhang J, Wang H. . CsPbI3 perovskite solar module with certified aperture area efficiency > 18% based on ambient-moisture-assisted surface hydrolysis. Joule, 2024, 8(10): 2851–2862
CrossRef Google scholar
[44]
Chen C, Zhao D. Tandem modules get better. Science, 2024, 383(6685): 829
CrossRef Google scholar
[45]
Wang Y, Lin R, Liu C. . Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature, 2024, 635(8040): 867–873
CrossRef Google scholar
[46]
Gao H, Xiao K, Lin R. . Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science, 2024, 383(6685): 855–859
CrossRef Google scholar
[47]
Guo X, Jia Z, Liu S. . Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells. Joule, 2024, 8(9): 2554–2569
CrossRef Google scholar
[48]
Wu S, Yan Y, Yin J. . Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells. Nature Energy, 2024, 9(4): 411–421
CrossRef Google scholar
[49]
Jiang X, Qin S, Meng L. . Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature, 2024, 635(8040): 860–866
CrossRef Google scholar
[50]
Brinkmann K O, Wang P, Lang F. . Perovskite-organic tandem solar cells. Nature Reviews. Materials, 2024, 9(3): 202–217
CrossRef Google scholar
[51]
Chen Y, Yang N, Zheng G. . Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science, 2024, 385(6708): 554–560
CrossRef Google scholar
[52]
Ugur E, Said A A, Dally P. . Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science, 2024, 385(6708): 533–538
CrossRef Google scholar
[53]
Yuan J, Zhang Y, Zhou L. . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4): 1140–1151
CrossRef Google scholar
[54]
Lin Y, Wang J, Zhang Z G. . An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials, 2015, 27(7): 1170–1174
CrossRef Google scholar
[55]
Zhu L, Zhang M, Zhou G. . Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk pin structure and improved optical management. Joule, 2024, 8(11): 3153–3168
CrossRef Google scholar
[56]
Gao S, Li X, Cao R. . Hot pure oxygen accelerated oxidation of spiro-OMeTAD for efficient perovskite solar cells with a record certified fill factor exceeding 87%. ACS Energy Letters, 2024, 9(10): 5037–5044
CrossRef Google scholar
[57]
Li Y, Huang X, Ding K. . Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nature Communications, 2021, 12(1): 5419
CrossRef Google scholar
[58]
Hußner M, Pacalaj R A, Olaf Müller-Dieckert G. . Machine learning for ultra high throughput screening of organic solar cells: solving the needle in the haystack problem. Advanced Energy Materials, 2024, 14(3): 2303000
CrossRef Google scholar
[59]
Guan S, Li Y, Xu C. . Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Advanced Materials, 2024, 36(25): 2400342
CrossRef Google scholar
[60]
Zhu L, Zhang M, Xu J. . Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21(6): 656–663
CrossRef Google scholar
[61]
Chen C, Wang L, Xia W. . Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nature Communications, 2024, 15(1): 6865
CrossRef Google scholar
[62]
Song J, Li C, Ma H. . Optimizing double-fibril network morphology via solid additive strategy enables binary all-polymer solar cells with 19.50% efficiency. Advanced Materials, 2024, 36(36): 2406922
CrossRef Google scholar
[63]
Gu H, Zhu J, Chen H. . Mechanics manipulation in large-area organic solar modules achieving over 16.5% efficiency. Giant, 2024, 18: 100286
CrossRef Google scholar
[64]
Basu R, Gumpert F, Lohbreier J. . Large-area organic photovoltaic modules with 14.5% certified world record efficiency. Joule, 2024, 8(4): 970–978
CrossRef Google scholar
[65]
National Renewable Energy Laboratory (NREL) . Champion photovoltaic module efficiency. 2025-1-3, available at website of NREL

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (No. 2022YFB4200101), the Shanghai New Energy Technology Research and Development Project, China (No. 24DZ3000900), the Inner Mongolia Science and Technology Project, China (Grant No. 2022JBGS0036) and the National Natural Science Foundation of China (Grant Nos. 52325306, 11834011, 11974242, and 22025505).

Competing Interests

Wenzhong Shen is a member of Editorial Board of Frontiers in Energy, who was excluded from the peer-review process and all editorial decisions related to the acceptance and publication of this article. Peer-review was handled independently by the other editors to minimise bias.

RIGHTS & PERMISSIONS

2025 Higher Education Press 2025
AI Summary AI Mindmap
PDF(537 KB)

Accesses

Citations

Detail

Sections
Recommended

/