Core-membrane microstructured amine-modified mesoporous biochar templated via ZnCl2/KCl for CO2 capture
Chen Zhang, Duoyong Zhang, Xinqi Zhang, Yongqiang Tian, Liwei Wang
Core-membrane microstructured amine-modified mesoporous biochar templated via ZnCl2/KCl for CO2 capture
Mesoporous biochar (MC) derived from biomass is synthesized using a dual-salt template method involving ZnCl2 and KCl, followed by impregnation with polyethyleneimine (PEI) of varying average molecular weights under vacuum conditions to construct a core-membrane structure for enhancing carbon capture performance. The resulting MC exhibits a highly intricate network of micropores and abundant mesopores, along with defects in graphitic structures, effectively facilitating robust PEI loading. Among the PEI-modified samples, PEI-600@MC demonstrates the highest CO2 sorption capacity, achieving approximately 3.35 mmol/g at 0.1 MPa and 70 °C, with an amine efficiency of 0.32 mmol CO2/mmol N. The introduction of amine functional groups in PEI significantly enhances the sorption capacity compared to bare MC. Additionally, PEI with lower average molecular weights exhibits a superior sorption performance at low pressures but shows a reduced thermal stability compared to higher molecular weight counterparts. The area of sorption hysteresis loops gradually decreases with increasing temperature and average molecular weight of PEI. The equilibrium sorption isotherms are accurately modeled by the Langmuir equation, revealing a maximum sorption capacity of approximately 3.53 mmol/g at 70 °C and saturation pressure. This work highlights the potential of dual-salts templated biomass-derived MC, modified with PEI, as an effective, widely available, and cost-efficient material for CO2 capture.
mesoporous biochar (MC) / dual-salt templated / carbon dioxide capture / sorption / polyethyleneimine (PEI)
[1] |
Gür T M . Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies. Progress in Energy and Combustion Science, 2022, 89: 100965
CrossRef
Google scholar
|
[2] |
Wang Z , Li Z , Liu L .
CrossRef
Google scholar
|
[3] |
Zhang C , Zhang D , Zhang X .
CrossRef
Google scholar
|
[4] |
Ma Q , Wang S , Fu Y .
CrossRef
Google scholar
|
[5] |
Xie J , Li K , Fan J .
CrossRef
Google scholar
|
[6] |
Seok Chae Y , Park S , Won Kang D .
CrossRef
Google scholar
|
[7] |
Lyu H , Chen O I F , Hanikel N .
CrossRef
Google scholar
|
[8] |
Al-Absi A A , Mohamedali M , Domin A .
CrossRef
Google scholar
|
[9] |
Chen H , Dong S , Zhang Y .
CrossRef
Google scholar
|
[10] |
Zhang C , Zhang Y , Su T .
CrossRef
Google scholar
|
[11] |
Shi L , Hu T , Xie R .
CrossRef
Google scholar
|
[12] |
Kumar D R , Rosu C , Sujan A R .
CrossRef
Google scholar
|
[13] |
Gaikwad S , Kim Y , Gaikwad R .
CrossRef
Google scholar
|
[14] |
Zhang C , Su T , Zhang X .
CrossRef
Google scholar
|
[15] |
He Z J , Wang Y Z , Miao Y H .
CrossRef
Google scholar
|
[16] |
Zhang J , Zuo J , Ai W .
CrossRef
Google scholar
|
[17] |
Miao Y , He Z , Zhu X .
CrossRef
Google scholar
|
[18] |
Min Y J , Ganesan A , Realff M J .
CrossRef
Google scholar
|
[19] |
Zhang S , Pan Q , Wang Y . Sunlight-controlled CO2 separation resulting from a biomass-based CO2 absorber. Green Energy & Environment, 2022, 7(3): 566–574
CrossRef
Google scholar
|
[20] |
Zhu X C , Ge T S , Yang F .
CrossRef
Google scholar
|
[21] |
Kumar R , Bandyopadhyay M , Pandey M .
CrossRef
Google scholar
|
[22] |
Nezam I , Xie J W , Golub K W .
CrossRef
Google scholar
|
[23] |
Chen Q , Wang S , Rout K R .
CrossRef
Google scholar
|
[24] |
Liu Y , Xiao M , Liu S .
CrossRef
Google scholar
|
[25] |
Qiu Y , Zhang C , Zhang R .
CrossRef
Google scholar
|
[26] |
Fu J , Shen F , Liu X .
CrossRef
Google scholar
|
[27] |
Zhou Q , Di G , Song T .
CrossRef
Google scholar
|
[28] |
Luo M , Wang L , Li H .
CrossRef
Google scholar
|
[29] |
Park Y M , Kim B G , Gao X .
CrossRef
Google scholar
|
[30] |
Sani S , Liu X , Li M .
CrossRef
Google scholar
|
[31] |
Du H , Ren J , Zhang W .
CrossRef
Google scholar
|
[32] |
Wang S , Eberhardt T L , Guo D .
CrossRef
Google scholar
|
[33] |
Xu C Y , Du R , Yu C B .
CrossRef
Google scholar
|
[34] |
Wu C , Liu J , Wu W .
CrossRef
Google scholar
|
[35] |
Wu C , Liu J , Wang Y .
CrossRef
Google scholar
|
[36] |
Liu W , Yang J , Liu S .
CrossRef
Google scholar
|
[37] |
Ma Z , Zhang H , Yang Z .
CrossRef
Google scholar
|
[38] |
Zhang C , Zhang X , Su T .
CrossRef
Google scholar
|
[39] |
Xu Z , Zhang X , Yang X .
CrossRef
Google scholar
|
[40] |
Li Z , Deng L , Kinloch I A .
CrossRef
Google scholar
|
[41] |
Yu J , Guo M , Muhammad F .
CrossRef
Google scholar
|
[42] |
Wang J , Chen H , Zhou H .
CrossRef
Google scholar
|
[43] |
Choi S , Gray M L , Jones C W . Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. ChemSusChem, 2011, 4(5): 628–635
CrossRef
Google scholar
|
[44] |
Zhang H , Liu R , Xin Y .
CrossRef
Google scholar
|
[45] |
Chen M , Yan Z , Luan J .
CrossRef
Google scholar
|
[46] |
Walleni C , Malik S B , Missaoui G .
CrossRef
Google scholar
|
[47] |
Cui Q , Zhang M , Chen M .
CrossRef
Google scholar
|
[48] |
Wan S , Fang S , Jiang L .
CrossRef
Google scholar
|
[49] |
Xu J , Lin W , Long J .
CrossRef
Google scholar
|
[50] |
Wang S , Kong R . Analyzing the flotation kinetics of long-flame coal slurry using water-soluble emulsified collector mixtures. Fuel, 2024, 360: 130572
CrossRef
Google scholar
|
[51] |
Xia X , Liao Z , Deng J .
CrossRef
Google scholar
|
[52] |
Torrisi L , Silipigni L , Cutroneo M .
CrossRef
Google scholar
|
[53] |
Dods M N , Weston S C , Long J R . Prospects for simultaneously capturing carbon dioxide and harvesting water from air. Advanced Materials, 2022, 34(38): 2204277
CrossRef
Google scholar
|
[54] |
Sani S , Liu X , Stevens L .
CrossRef
Google scholar
|
[55] |
Gibson J A A , Gromov A V , Brandani S .
CrossRef
Google scholar
|
[56] |
Tang Z , Han Z , Yang G .
CrossRef
Google scholar
|
[57] |
Chai S H , Liu Z M , Huang K .
CrossRef
Google scholar
|
[58] |
Yan H , Zhang G , Liu J .
CrossRef
Google scholar
|
[59] |
Kong W , Liu J . Ordered mesoporous carbon with enhanced porosity to support organic amines: Efficient nanocomposites for the selective capture of CO2. New Journal of Chemistry, 2019, 43(15): 6040–6047
CrossRef
Google scholar
|
/
〈 | 〉 |