Defect engineering in two-dimensional materials for photocatalysis: A mini-review of first-principles design
Yiqing Chen, Xiao-Yan Li, Pengfei Ou
Defect engineering in two-dimensional materials for photocatalysis: A mini-review of first-principles design
Two-dimensional (2D) materials have emerged as a significant class of materials promising for photocatalysis, and defect engineering offers an effective route for enhancing their photocatalytic performance. In this mini-review, a first-principles design perspective on defect engineering in 2D materials for photocatalysis is provided. Various types of defects in 2D materials, spanning point, line, and planar defects are explored, and their influence on the intrinsic properties and photocatalytic efficacy of these materials is highlighted. Additionally, the use of theoretical descriptors to characterize the stability, electronic, optical, and catalytic properties of 2D defective systems is summarized. Central to the discussion is the understanding of electronic structure, optical properties, and reaction mechanisms to inform the rational design of photocatalysts based on 2D materials for enhanced photocatalytic performance. This mini-review aims to provide insights into the computational design of 2D defect systems tailored for efficient photocatalytic applications.
photocatalysis / first-principles / defect engineering / descriptors / two-dimensional materials
[1] |
Moniz S J A , Shevlin S A , Martin D J .
CrossRef
Google scholar
|
[2] |
Morozov S V , Novoselov K S , Katsnelson M I .
CrossRef
Google scholar
|
[3] |
Peigney A , Laurent C , Flahaut E .
CrossRef
Google scholar
|
[4] |
Lee C , Wei X , Kysar J W .
CrossRef
Google scholar
|
[5] |
Novoselov K S , Geim A K , Morozov S V .
CrossRef
Google scholar
|
[6] |
Peng B , Ang P K , Loh K P . Two-dimensional dichalcogenides for light-harvesting applications. Nano Today, 2015, 10(2): 128–137
CrossRef
Google scholar
|
[7] |
Mortazavi B , Fan Z , Pereira L F C .
CrossRef
Google scholar
|
[8] |
Chen Y , Meng F , Bie X .
CrossRef
Google scholar
|
[9] |
Di J , Hao G , Jiang W .
CrossRef
Google scholar
|
[10] |
Ou P , Zhou X , Meng F .
CrossRef
Google scholar
|
[11] |
Chen Y , Ou P , Bie X .
CrossRef
Google scholar
|
[12] |
Zhao Y , Chen Y , Ou P .
CrossRef
Google scholar
|
[13] |
Li Y , Li Y L , Sa B .
CrossRef
Google scholar
|
[14] |
Samanta B , Morales-García Á , Illas F .
CrossRef
Google scholar
|
[15] |
Ge L , Ke Y , Li X . Machine learning integrated photocatalysis: Progress and challenges. Chemical Communications, 2023, 59(39): 5795–5806
CrossRef
Google scholar
|
[16] |
Luo B , Liu G , Wang L . Recent advances in 2D materials for photocatalysis. Nanoscale, 2016, 8(13): 6904–6920
CrossRef
Google scholar
|
[17] |
Hisatomi T , Kubota J , Domen K . Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43(22): 7520–7535
CrossRef
Google scholar
|
[18] |
Yu J , Xu C Y , Ma F X .
CrossRef
Google scholar
|
[19] |
Dong X , Cheng F . Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(47): 23642–23652
CrossRef
Google scholar
|
[20] |
Zhang X , Zhang Z , Wu D .
CrossRef
Google scholar
|
[21] |
Faraji M , Yousefi M , Yousefzadeh S .
CrossRef
Google scholar
|
[22] |
Hinnemann B , Moses P G , Bonde J .
CrossRef
Google scholar
|
[23] |
Jaramillo TF , Jørgensen KP , Bonde J .
CrossRef
Google scholar
|
[24] |
Ouyang Y , Ling C , Chen Q .
CrossRef
Google scholar
|
[25] |
Li H , Tsai C , Koh A L .
CrossRef
Google scholar
|
[26] |
Li L , Qin Z , Ries L .
CrossRef
Google scholar
|
[27] |
Li H , Tsai C , Koh A L .
CrossRef
Google scholar
|
[28] |
Guan M , Xiao C , Zhang J .
CrossRef
Google scholar
|
[29] |
Bi W , Ye C , Xiao C .
CrossRef
Google scholar
|
[30] |
Liu Y , Xiao C , Li Z .
CrossRef
Google scholar
|
[31] |
Dou Y , He C T , Zhang L .
CrossRef
Google scholar
|
[32] |
Feng C , Wu Z P , Huang K W .
CrossRef
Google scholar
|
[33] |
Lei F , Zhang L , Sun Y .
CrossRef
Google scholar
|
[34] |
Chen K , Zhou S , Jiang T .
CrossRef
Google scholar
|
[35] |
Lee Y , Ling N , Kim D .
CrossRef
Google scholar
|
[36] |
Zhao N , Wang L , Zhang Z .
CrossRef
Google scholar
|
[37] |
Zhu J , Wang Z C , Dai H .
CrossRef
Google scholar
|
[38] |
Peng R , Liang L , Hood Z D .
CrossRef
Google scholar
|
[39] |
Duong D L , Yun S J , Lee Y H . van der Waals layered materials: Opportunities and challenges. ACS Nano, 2017, 11(12): 11803–11830
CrossRef
Google scholar
|
[40] |
Novoselov K S , Mishchenko A , Carvalho A .
CrossRef
Google scholar
|
[41] |
Luo Y , Wang S , Ren K .
CrossRef
Google scholar
|
[42] |
Ren K , Yu J , Tang W . A two-dimensional vertical van der Waals heterostructure based on g-GaN and Mg (OH)2 used as a promising photocatalyst for water splitting: A first-principles calculation. Journal of Applied Physics, 2019, 126(6): 065701
CrossRef
Google scholar
|
[43] |
Yu H , Dai M , Zhang J .
CrossRef
Google scholar
|
[44] |
Xu J , Gao J , Qi Y .
CrossRef
Google scholar
|
[45] |
Ma Y , Qiu B , Zhang J .
CrossRef
Google scholar
|
[46] |
Wang X , Wu J , Zhang Y .
CrossRef
Google scholar
|
[47] |
Aras M , Kılıç Ç , Ciraci S . Lateral and vertical heterostructures of transition metal dichalcogenides. Journal of Physical Chemistry C, 2018, 122(3): 1547–1555
CrossRef
Google scholar
|
[48] |
Bölle FT , Mikkelsen AEG , Thygesen KS .
CrossRef
Google scholar
|
[49] |
Freysoldt C , Grabowski B , Hickel T .
CrossRef
Google scholar
|
[50] |
Li A , Pan J , Dai X .
CrossRef
Google scholar
|
[51] |
Komsa H P , Berseneva N , Krasheninnikov A V .
CrossRef
Google scholar
|
[52] |
Dabo I , Kozinsky B , Singh-Miller N E .
CrossRef
Google scholar
|
[53] |
Schleder G R , Acosta C M , Fazzio A . Exploring two-dimensional materials thermodynamic stability via machine learning. ACS Applied Materials & Interfaces, 2020, 12(18): 20149–20157
CrossRef
Google scholar
|
[54] |
Mounet N , Gibertini M , Schwaller P .
CrossRef
Google scholar
|
[55] |
Zhou J , Shen L , Costa M D .
CrossRef
Google scholar
|
[56] |
Choudhary K , Kalish I , Beams R .
CrossRef
Google scholar
|
[57] |
Ashton M , Paul J , Sinnott S B .
CrossRef
Google scholar
|
[58] |
Huang P , Lukin R , Faleev M .
CrossRef
Google scholar
|
[59] |
Bertoldo F , Ali S , Manti S , Thygesen K S . Quantum point defects in 2D materials—The QPOD database. npj Computational Materials, 2022, 8(1): 56
CrossRef
Google scholar
|
[60] |
Singh A K , Mathew K , Zhuang H L .
CrossRef
Google scholar
|
[61] |
Mathew K , Sundararaman R , Letchworth-Weaver K .
CrossRef
Google scholar
|
[62] |
Steinmann S N , Sautet P , Michel C . Solvation free energies for periodic surfaces: Comparison of implicit and explicit solvation models. Physical Chemistry Chemical Physics, 2016, 18(46): 31850–31861
CrossRef
Google scholar
|
[63] |
Pan B C , Yang W S , Yang J . Formation energies of topological defects in carbon nanotubes. Physical Review B: Condensed Matter, 2000, 62(19): 12652–12655
CrossRef
Google scholar
|
[64] |
Malyi O I , Sopiha K V , Persson C . Energy, phonon, and dynamic stability criteria of two-dimensional materials. ACS Applied Materials & Interfaces, 2019, 11(28): 24876–24884
CrossRef
Google scholar
|
[65] |
Chen Z, Dinh H N, Miller E. Photoelectrochemical Water Splitting. New York: Springer, 2013
|
[66] |
Xiao H , Tahir-Kheli J , Goddard W A III . Accurate band gaps for semiconductors from density functional theory. Journal of Physical Chemistry Letters, 2011, 2(3): 212–217
CrossRef
Google scholar
|
[67] |
Crowley J M , Tahir-Kheli J , Goddard W A III . Resolution of the band gap prediction problem for materials design. Journal of Physical Chemistry Letters, 2016, 7(7): 1198–1203
CrossRef
Google scholar
|
[68] |
Jain M , Chelikowsky J R , Louie S G . Reliability of hybrid functionals in predicting band gaps. Physical Review Letters, 2011, 107(21): 216806
CrossRef
Google scholar
|
[69] |
Saßnick H D , Cocchi C . Electronic structure of cesium-based photocathode materials from density functional theory: Performance of PBE, SCAN, and HSE06 functionals. Electronic Structure., 2021, 3(2): 027001
CrossRef
Google scholar
|
[70] |
Mourino B , Jablonka K M , Ortega-Guerrero A .
CrossRef
Google scholar
|
[71] |
Wang H , Jin S , Zhang X .
CrossRef
Google scholar
|
[72] |
Botti S , Sottile F , Vast N .
CrossRef
Google scholar
|
[73] |
Kronik L , Stein T , Refaely-Abramson S .
CrossRef
Google scholar
|
[74] |
Shu H , Li Y , Niu X .
CrossRef
Google scholar
|
[75] |
Biswas T , Singh AK . Excitonic effects in absorption spectra of carbon dioxide reduction photocatalysts. npj Computational Materials, 2021, 7(1): 189
CrossRef
Google scholar
|
[76] |
Ugeda M M , Bradley A J , Shi S F .
CrossRef
Google scholar
|
[77] |
Qiu D Y , da Jornada F H , Louie S G . Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Physical Review Letters, 2013, 111(21): 216805
CrossRef
Google scholar
|
[78] |
Abild-Pedersen F , Greeley J , Studt F .
CrossRef
Google scholar
|
[79] |
Wang X , Zhang G , Yang L .
CrossRef
Google scholar
|
[80] |
Liu F , Shi C , Guo X .
CrossRef
Google scholar
|
[81] |
Østergaard F C , Bagger A , Rossmeisl J . Predicting catalytic activity in hydrogen evolution reaction. Current Opinion in Electrochemistry, 2022, 35: 101037
CrossRef
Google scholar
|
[82] |
Hammer B , Nørskov J K . Electronic factors determining the reactivity of metal surfaces. Surface Science, 1995, 343(3): 211–220
CrossRef
Google scholar
|
[83] |
Nilsson A , Pettersson L G M , Hammer B .
CrossRef
Google scholar
|
[84] |
Shu H , Zhou D , Li F .
CrossRef
Google scholar
|
[85] |
Pérez-Ramírez J , López N . Strategies to break linear scaling relationships. Nature Catalysis, 2019, 2(11): 971–976
CrossRef
Google scholar
|
[86] |
Huang Y , Nielsen R J , Goddard W A III .
CrossRef
Google scholar
|
[87] |
Knøsgaard N R , Thygesen K S . Representing individual electronic states for machine learning GW band structures of 2D materials. Nature Communications, 2022, 13(1): 468
CrossRef
Google scholar
|
[88] |
Tawfik S A , Isayev O , Stampfl C .
CrossRef
Google scholar
|
[89] |
Zhu Z , Dong B , Guo H .
CrossRef
Google scholar
|
[90] |
Rajan A C , Mishra A , Satsangi S .
CrossRef
Google scholar
|
[91] |
Dau M T , Al Khalfioui M , Michon A .
CrossRef
Google scholar
|
[92] |
Manzoor A , Arora G , Jerome B .
CrossRef
Google scholar
|
[93] |
Choudhary K , Sumpter B G . Can a deep-learning model make fast predictions of vacancy formation in diverse materials. AIP Advances, 2023, 13(9): 095109
CrossRef
Google scholar
|
[94] |
Mueller T , Hernandez A , Wang C . Machine learning for interatomic potential models. Journal of Chemical Physics, 2020, 152(5): 050902
CrossRef
Google scholar
|
[95] |
Musa E , Doherty F , Goldsmith B R . Accelerating the structure search of catalysts with machine learning. Current Opinion in Chemical Engineering, 2022, 35: 100771
CrossRef
Google scholar
|
[96] |
Mortazavi B , Silani M , Podryabinkin E V .
CrossRef
Google scholar
|
[97] |
Sun S, Singh A, Li Y, et al. Machine learning accelerated atomistic simulations for 2D materials with defects. In: ASME International Mechanical Engineering Congress and Exposition, 2023: American Society of Mechanical Engineers
|
[98] |
Goryaeva A M , Dérès J , Lapointe C .
CrossRef
Google scholar
|
[99] |
Dragoni D , Daff T D , Csányi G .
CrossRef
Google scholar
|
[100] |
Kumar R , Singh AK . Chemical hardness-driven interpretable machine learning approach for rapid search of photocatalysts. npj Computational Materials, 2021, 7(1): 197
CrossRef
Google scholar
|
[101] |
Pan R , Liu J , Zhang J . Defect engineering in 2D photocatalytic materials for CO2 reduction. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2021, 7(7): 737–747
CrossRef
Google scholar
|
[102] |
Xiong J , Di J , Xia J .
CrossRef
Google scholar
|
[103] |
Shi R , Zhao Y , Waterhouse G I .
CrossRef
Google scholar
|
[104] |
Sun X , Zhang X , Xie Y . Surface defects in two-dimensional photocatalysts for efficient organic synthesis. Matter, 2020, 2(4): 842–861
CrossRef
Google scholar
|
[105] |
Zhao Y , Chen G , Bian T .
CrossRef
Google scholar
|
[106] |
Zhang X , Chen A , Chen L .
CrossRef
Google scholar
|
[107] |
Momeni K , Ji Y , Wang Y .
CrossRef
Google scholar
|
[108] |
Kovačič Ž , Likozar B , Huš M . Photocatalytic CO2 reduction: A review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catalysis, 2020, 10(24): 14984–15007
CrossRef
Google scholar
|
[109] |
Koparde V N , Cummings P T . Molecular dynamics study of water adsorption on TiO2 nanoparticles. Journal of Physical Chemistry C, 2007, 111(19): 6920–6926
CrossRef
Google scholar
|
[110] |
Raymand D , van Duin A C T , Spångberg D .
CrossRef
Google scholar
|
[111] |
Liu D J , Garcia A , Wang J .
CrossRef
Google scholar
|
[112] |
Deskins N A, Rao P M, Dupuis M. Charge carrier management in semiconductors: Modeling charge transport and recombination. In: Bahnemann D, Patrocinio A O T, eds. Springer Handbook of Inorganic Photochemistry. Cham: Springer International Publishing, 2022
|
[113] |
Lin F , Huang J , Hin C . Electron transport from quantum kinetic Monte Carlo simulations. Journal of Physical Chemistry C, 2018, 122(35): 20550–20554
CrossRef
Google scholar
|
[114] |
Santos E. In search of lost descriptors: Correlations and their risks. Current Opinion in Electrochemistry, 2022, 37: 101194
|
/
〈 | 〉 |