A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction
Jing XUE, Zhenlin CHEN, Yuchao ZHANG, Jincai ZHAO
A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction
Utilizing plasmonic effects to assist electrochemical reactions exhibits a huge potential in tuning the reaction activities and product selectivity, which is most appealing especially in chemical reactions with multiple products, such as CO2 reduction reaction (CO2RR). However, a comprehensive review of the development and the underlying mechanisms in plasmon-assisted electrocatalytic CO2RR remains few and far between. Herein, the fundamentals of localized surface plasmonic resonance (LSPR) excitation and the properties of typical plasmonic metals (including Au, Ag, and Cu) are retrospected. Subsequently, the potential mechanisms of plasmonic effects (such as hot carrier effects and photothermal effects) on the reaction performance in the field of plasmon-assisted electrocatalytic CO2RR are summarized, which provides directions for the future development of this field. It is concluded that plasmonic catalysts exhibit potential capabilities in enhancing CO2RR while more in situ techniques are essential to further clarify the inner mechanisms.
localized surface plasmonic resonance (LSPR) effect / plasmonic metals / CO2 reduction reaction (CO2RR) / hot carrier effect / photothermal effect
[1] |
Setzer J, Higham C.Global trends in climate change litigation: 2023 snapshot. Grantham Research Institute Report, 2023
|
[2] |
Mittal D, Ahlawat M, Govind Rao V. Recent progress and challenges in plasmon-mediated reduction of CO2 to chemicals and fuels. Advanced Materials Interfaces, 2022, 9(12): 2102383–06
CrossRef
Google scholar
|
[3] |
Matthews H D, Wynes S. Current global efforts are insufficient to limit warming to 1.5 °C. Science, 2022, 376(6600): 1404–1409
CrossRef
Google scholar
|
[4] |
Guo F, He G. Size, alloy and interface effects on Cu-based catalysts for enhancing electrochemical reduction of CO2. Results in Engineering, 2023, 20: 101510–101522
CrossRef
Google scholar
|
[5] |
Li L, Zhang Y, Zhou T.
CrossRef
Google scholar
|
[6] |
Liu Z, Deng Z, He G.
CrossRef
Google scholar
|
[7] |
Kuhl K P, Cave E R, Abram D N.
CrossRef
Google scholar
|
[8] |
Chang B, Pang H, Raziq F.
CrossRef
Google scholar
|
[9] |
da Silva A H M, Karaiskakis G, Vos R E.
CrossRef
Google scholar
|
[10] |
Wang J, Tan H Y, Qi M Y.
CrossRef
Google scholar
|
[11] |
Lv J J, Yin R, Zhou L.
CrossRef
Google scholar
|
[12] |
Wang G, Chen J, Ding Y.
CrossRef
Google scholar
|
[13] |
O’Brien C P, Miao R K, Shayesteh Zeraati A.
CrossRef
Google scholar
|
[14] |
Yang P P, Gao M R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chemical Society Reviews, 2023, 52(13): 4343–4380
CrossRef
Google scholar
|
[15] |
Nitopi S, Bertheussen E, Scott S B.
CrossRef
Google scholar
|
[16] |
Yan T, Chen X, Kumari L.
CrossRef
Google scholar
|
[17] |
Yu J, Wang J, Ma Y.
CrossRef
Google scholar
|
[18] |
Liu J, Xia C, Zaman S.
CrossRef
Google scholar
|
[19] |
Zhu Z, Tang R, Li C.
CrossRef
Google scholar
|
[20] |
Vu N N, Kaliaguine S, Do T O. Plasmonic photocatalysts for sunlight-driven reduction of CO2: Details, developments, and perspectives. ChemSusChem, 2020, 13(16): 3967–3991
CrossRef
Google scholar
|
[21] |
Verma R, Belgamwar R, Polshettiwar V. Plasmonic photocatalysis for CO2 conversion to chemicals and fuels. ACS Materials Letters, 2021, 3(5): 574–598
CrossRef
Google scholar
|
[22] |
Devasia D, Wilson A J, Heo J.
CrossRef
Google scholar
|
[23] |
Yu S, Jain P K. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nature Communications, 2019, 10(1): 2022–2028
CrossRef
Google scholar
|
[24] |
Zhao J, Xue S, Ji R.
CrossRef
Google scholar
|
[25] |
Yu S, Jain P K. The chemical potential of plasmonic excitations. Angewandte Chemie International Edition, 2019, 59(5): 2085–2088
CrossRef
Google scholar
|
[26] |
Wilson A J, Jain P K. Light-induced voltages in catalysis by plasmonic nanostructures. Accounts of Chemical Research, 2020, 53(9): 1773–1781
CrossRef
Google scholar
|
[27] |
Zhang Y, Guo W, Zhang Y.
CrossRef
Google scholar
|
[28] |
Wang S, Tang D, Zhang Y.
CrossRef
Google scholar
|
[29] |
Ha M, Kim J H, You M.
CrossRef
Google scholar
|
[30] |
Yu S, Wilson A J, Kumari G.
CrossRef
Google scholar
|
[31] |
Dong Y, Hu C, Xiong H.
CrossRef
Google scholar
|
[32] |
Aslam U, Rao V G, Chavez S.
CrossRef
Google scholar
|
[33] |
Linic S, Aslam U, Boerigter C.
CrossRef
Google scholar
|
[34] |
Xue J, Wu L, Deng C.
CrossRef
Google scholar
|
[35] |
Jeong S, Liu Y, Zhong Y.
CrossRef
Google scholar
|
[36] |
Duan J L, Cornelius T W, Liu J.
CrossRef
Google scholar
|
[37] |
Sundararaman R, Narang P, Jermyn A S.
CrossRef
Google scholar
|
[38] |
Brown A M, Sundararaman R, Narang P.
CrossRef
Google scholar
|
[39] |
Zhao J, Nguyen S C, Ye R.
CrossRef
Google scholar
|
[40] |
Wang S, Wu L, Li J.
CrossRef
Google scholar
|
[41] |
Tsai C Y, Lin J W, Wu C Y.
CrossRef
Google scholar
|
[42] |
Zhang Y, He S, Guo W.
CrossRef
Google scholar
|
[43] |
Bagnall A J, Ganguli S, Sekretareva A. Hot or not? Reassessing mechanisms of photocurrent generation in plasmon-enhanced electrocatalysis. Angewandte Chemie International Edition, 2024, 63(7): e202314352
CrossRef
Google scholar
|
[44] |
Zhang X, Li X, Reish M E.
CrossRef
Google scholar
|
[45] |
Zhan C, Liu B W, Huang Y F.
CrossRef
Google scholar
|
[46] |
Yu Y, Sundaresan V, Willets K A. Hot carriers versus thermal effects: Resolving the enhancement mechanisms for plasmon-mediated photoelectrochemical reactions. Journal of Physical Chemistry C, 2018, 122(9): 5040–5048
CrossRef
Google scholar
|
[47] |
Xu C, Zhang X, Zhu M N.
CrossRef
Google scholar
|
[48] |
Zhou L, Lou M, Bao J L.
CrossRef
Google scholar
|
[49] |
Creel E B, Corson E R, Eichhorn J.
CrossRef
Google scholar
|
[50] |
Rodrigues M P S, Dourado A H B, Sampaio de Oliveira-Filho A G.
CrossRef
Google scholar
|
[51] |
Ou W, Zhou B, Shen J.
CrossRef
Google scholar
|
[52] |
Wei Y, Mao Z, Jiang T W.
CrossRef
Google scholar
|
[53] |
Ou W, Fan Y, Shen J.
CrossRef
Google scholar
|
[54] |
Xue J, Chen Z, Dang K.
CrossRef
Google scholar
|
[55] |
Ding J, Wang F, Pan F.
CrossRef
Google scholar
|
[56] |
Wu K, Chen J, McBride J R.
CrossRef
Google scholar
|
[57] |
Rao V G, Aslam U, Linic S. Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions. Journal of the American Chemical Society, 2018, 141(1): 643–647
CrossRef
Google scholar
|
[58] |
Kale M J, Avanesian T, Xin H.
CrossRef
Google scholar
|
[59] |
Christopher P, Xin H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 2011, 3(6): 467–472
CrossRef
Google scholar
|
[60] |
Wan R, Liu S, Wang Y.
CrossRef
Google scholar
|
[61] |
Yu S, Wilson A J, Heo J.
CrossRef
Google scholar
|
[62] |
Kim Y, Smith J G, Jain P K. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nature Chemistry, 2018, 10(7): 763–769
CrossRef
Google scholar
|
[63] |
Kuhl K P, Hatsukade T, Cave E R.
CrossRef
Google scholar
|
[64] |
Vasileff A, Xu C, Jiao Y.
CrossRef
Google scholar
|
[65] |
Choi C H, Chung K, Nguyen T T H.
CrossRef
Google scholar
|
[66] |
Wang Y, Liu J, Zheng G. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Advanced Materials, 2021, 33(46): 2005798
CrossRef
Google scholar
|
[67] |
Xiong H, Sun Q, Chen K.
CrossRef
Google scholar
|
[68] |
Hou W, Hung W H, Pavaskar P.
CrossRef
Google scholar
|
[69] |
Zhao H, Zheng X, Feng X.
CrossRef
Google scholar
|
[70] |
Bera S, Lee J E, Rawal S B.
CrossRef
Google scholar
|
[71] |
Shangguan W, Liu Q, Wang Y.
CrossRef
Google scholar
|
[72] |
Zhang Y, Zhang Y, Guo W.
CrossRef
Google scholar
|
[73] |
Lu W, Ju F, Yao K.
CrossRef
Google scholar
|
[74] |
Bi X, Wang H, Yang Z.
CrossRef
Google scholar
|
[75] |
Zhang X G, Liu Y, Zhan C.
CrossRef
Google scholar
|
[76] |
Kim Y, Creel E B, Corson E R.
CrossRef
Google scholar
|
[77] |
Corson E R, Kas R, Kostecki R.
CrossRef
Google scholar
|
[78] |
Zheng P, Tang H, Liu B.
CrossRef
Google scholar
|
[79] |
Xin Y, Yu K, Zhang L.
CrossRef
Google scholar
|
[80] |
Zhang X, Fu A, Chen X.
CrossRef
Google scholar
|
[81] |
Zhou Y, Liang Y, Fu J.
CrossRef
Google scholar
|
[82] |
Zhao J, Zhang P, Yuan T.
CrossRef
Google scholar
|
[83] |
Yang Y, Louisia S, Yu S.
CrossRef
Google scholar
|
[84] |
Jia Y, Li F, Fan K.
CrossRef
Google scholar
|
[85] |
Okatenko V, Loiudice A, Newton M A.
CrossRef
Google scholar
|
[86] |
Corson E R, Subramani A, Cooper J K.
CrossRef
Google scholar
|
[87] |
Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 2015, 10(1): 25–34
CrossRef
Google scholar
|
[88] |
Xiao F, Liu B. Plasmon-dictated photo-electrochemical water splitting for solar-to-chemical energy conversion: Current status and future perspectives. Advanced Materials Interfaces, 2018, 5(6): 1701098–1701118
CrossRef
Google scholar
|
[89] |
DuChene J S, Sweeny B C, Johnston-Peck A C.
CrossRef
Google scholar
|
[90] |
Liu S, Wu L, Tang D.
CrossRef
Google scholar
|
[91] |
White J L, Baruch M F, Pander J E III.
CrossRef
Google scholar
|
[92] |
Wang Z j, Song H, Pang H.
CrossRef
Google scholar
|
[93] |
Tang H, Chen C J, Huang Z.
CrossRef
Google scholar
|
[94] |
Dang K, Liu S, Wu L.
CrossRef
Google scholar
|
[95] |
DuChene J S, Tagliabue G, Welch A J.
CrossRef
Google scholar
|
[96] |
Jun H, Choi S, Lee J B.
CrossRef
Google scholar
|
[97] |
Govorov A O, Zhang H, Gun’ko Y K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. Journal of Physical Chemistry C, 2013, 117(32): 16616–16631
CrossRef
Google scholar
|
[98] |
Li R, Cheng W H, Richter M H.
CrossRef
Google scholar
|
[99] |
Zhukhovitskiy A V, MacLeod M J, Johnson J A. Carbene ligands in surface chemistry: From stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chemical Reviews, 2015, 115(20): 11503–11532
CrossRef
Google scholar
|
[100] |
Cao Z, Kim D, Hong D.
CrossRef
Google scholar
|
[101] |
DuChene J S, Tagliabue G, Welch A J.
CrossRef
Google scholar
|
[102] |
Li D, Yang K, Lian J.
CrossRef
Google scholar
|
[103] |
Hongrutai N, Watmanee S, Pinthong P.
CrossRef
Google scholar
|
[104] |
Zhang Y, Wang Q, Wang K.
CrossRef
Google scholar
|
[105] |
Landaeta E, Kadosh N I, Schultz Z D. Mechanistic study of plasmon-assisted in situ photoelectrochemical CO2 reduction to acetate with a Ag-Cu2O nanodendrite electrode. ACS Catalysis, 2023, 13(3): 1638–1648
CrossRef
Google scholar
|
[106] |
Shao F, Xia Z, You F.
CrossRef
Google scholar
|
[107] |
Yan X, Wang L, Tan X.
CrossRef
Google scholar
|
/
〈 | 〉 |