Catalytic hydrodeoxygenation of pyrolysis bio-oil to jet fuel: A review
Zhongyang Luo, Wanchen Zhu, Feiting Miao, Jinsong Zhou
Catalytic hydrodeoxygenation of pyrolysis bio-oil to jet fuel: A review
Bio-oil from biomass pyrolysis cannot directly substitute traditional fuel due to compositional deficiencies. Catalytic hydrodeoxygenation (HDO) is the critical and efficient step to upgrade crude bio-oil to high-quality bio-jet fuel by lowering the oxygen content and increasing the heating value. However, the hydrocracking reaction tends to reduce the liquid yield and increase the gas yield, causing carbon loss and producing hydrocarbons with a short carbon-chain. To obtain high-yield bio-jet fuel, the elucidation of the conversion process of biomass catalytic HDO is important in providing guidance for metal catalyst design and optimization of reaction conditions. Considering the complexity of crude bio-oil, this review aimed to investigate the catalytic HDO pathways with model compounds that present typical bio-oil components. First, it provided a comprehensive summary of the impact of physical and electronic structures of both noble and non-noble metals that include monometallic and bimetallic supported catalysts on regulating the conversion pathways and resulting product selectivity. The subsequent first principle calculations further corroborated reaction pathways of model compounds in atom-level on different catalyst surfaces with the experiments above and illustrated the favored C–O/C=O scission orders thermodynamically and kinetically. Then, it discussed hydrogenation effects of different H-donors (such as hydrogen and methane) and catalysts deactivation for economical and industrial consideration. Based on the descriptions above and recent researches, it also elaborated on catalytic HDO of biomass and bio-oil with multi-functional catalysts. Finally, it presented the challenges and future prospective of biomass catalytic HDO.
biomass pyrolysis oil / bio-jet fuel / catalytic hydrodeoxygenation (HDO) / metal catalyst / reaction pathways
[1] |
InternationalEnergy Agency (IEA). Outlook—Key World Energy Statistics 2021—Analysis. 2023–11-13, available at the website of IEA
|
[2] |
InternationalEnergy Agency (IEA). Overview—World Energy Outlook 2021—Analysis. 2023–11-13, available at the website of IEA
|
[3] |
Alabi O, Abubakar A, Werkmeister A.
CrossRef
Google scholar
|
[4] |
Ganti G, Gidden M J, Smith C J.
CrossRef
Google scholar
|
[5] |
IntergovernmentalPanel on Climate Change (IPCC). IPCC meets to approve the final component of the Sixth Assessment Report. 2023–11-13, available at the website of IPCC
|
[6] |
USEnergy Information Administration (EIA). International Energy Outlook 2023. 2023–11-13, available at the website of EIA
|
[7] |
Su C W, Pang L D, Qin M.
CrossRef
Google scholar
|
[8] |
Ju Y, Liu R, Fu L. Engineering fronts in fields of Energy and Electrical Science and Technologies in the report of Engineering Fronts 2022. Frontiers in Energy, 2023, 17(1): 5–8
CrossRef
Google scholar
|
[9] |
Osman A I, Farghali M, Ihara I.
CrossRef
Google scholar
|
[10] |
Mujtaba M, Fernandes Fraceto L, Fazeli M.
CrossRef
Google scholar
|
[11] |
Bhoi P R, Ouedraogo A S, Soloiu V.
CrossRef
Google scholar
|
[12] |
Popp J, Lakner Z, Harangi-Rákos M.
CrossRef
Google scholar
|
[13] |
Dabros T M H, Stummann M Z, Høj M.
CrossRef
Google scholar
|
[14] |
AviationBenefits Beyond Borders. Waypoint 2050. 2023–11-13, available at the website of Aviationbenefits
|
[15] |
Andrade M C, Gorgulho Silva C D O, de Souza Moreira L R.
CrossRef
Google scholar
|
[16] |
Xu Y, Liu X, Qi J.
CrossRef
Google scholar
|
[17] |
Pan P, Wu Y, Chen H. Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating. Frontiers in Energy, 2022, 16(2): 321–335
CrossRef
Google scholar
|
[18] |
Guo S, Wei X, Che D.
CrossRef
Google scholar
|
[19] |
Khalifa O, Xu M, Zhang R.
CrossRef
Google scholar
|
[20] |
Li H, Hou C, Zhai Y.
CrossRef
Google scholar
|
[21] |
Yu H, Wu J, Wei W.
CrossRef
Google scholar
|
[22] |
Yan P, Nur Azreena I, Peng H.
CrossRef
Google scholar
|
[23] |
Liu X, Chen Z, Lu S.
CrossRef
Google scholar
|
[24] |
Bridgwater A. Fast pyrolysis processes for biomass. Renewable & Sustainable Energy Reviews, 2000, 4(1): 1–73
CrossRef
Google scholar
|
[25] |
Wang M, Dewil R, Maniatis K.
CrossRef
Google scholar
|
[26] |
Yang Y, Xu X, He H.
CrossRef
Google scholar
|
[27] |
Gea S, Hutapea Y A, Piliang A F R.
CrossRef
Google scholar
|
[28] |
Ouedraogo A S, Bhoi P R. Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil. Journal of Cleaner Production, 2020, 253: 119957
CrossRef
Google scholar
|
[29] |
Figueirêdo M B, Jotic Z, Deuss P J.
CrossRef
Google scholar
|
[30] |
Sun J, Shao S, Hu X.
CrossRef
Google scholar
|
[31] |
Wang H, Ruan H, Feng M.
CrossRef
Google scholar
|
[32] |
Xue S, Luo Z, Sun H.
CrossRef
Google scholar
|
[33] |
Tian X, Wang Y, Zeng Z.
CrossRef
Google scholar
|
[34] |
Sun M, Zhang Y, Liu W.
CrossRef
Google scholar
|
[35] |
Shivhare A, Hunns J A, Durndell L J.
CrossRef
Google scholar
|
[36] |
Teles C A, De Souza P M, Rabelo-Neto R C.
CrossRef
Google scholar
|
[37] |
Feng S, Liu X, Su Z.
CrossRef
Google scholar
|
[38] |
Zhang K, Meng Q, Wu H.
CrossRef
Google scholar
|
[39] |
Cai T, Deng Q, Peng H.
CrossRef
Google scholar
|
[40] |
Yan P, Wang H, Liao Y.
CrossRef
Google scholar
|
[41] |
Gao Z, Zhou Z, Wang M.
CrossRef
Google scholar
|
[42] |
Wang L, Yang Y, Shi Y.
CrossRef
Google scholar
|
[43] |
Cho H J, Kim D, Xu B. Pore size engineering enabled selectivity control in tandem catalytic upgrading of cyclopentanone on zeolite-encapsulated Pt nanoparticles. ACS Catalysis, 2020, 10(15): 8850–8859
CrossRef
Google scholar
|
[44] |
Deng Q, Peng H, Yang Z.
CrossRef
Google scholar
|
[45] |
Ly H V, Kim J, Hwang H T.
CrossRef
Google scholar
|
[46] |
Song Q L, Zhao Y P, Wu F P.
CrossRef
Google scholar
|
[47] |
Kumar A, Biswas B, Saini K.
CrossRef
Google scholar
|
[48] |
Song W, Liu Y, Baráth E.
CrossRef
Google scholar
|
[49] |
Saidi M, Moradi P. Catalytic hydrotreatment of lignin-derived pyrolysis bio-oils using Cu/γ-Al2O3 catalyst: Reaction network development and kinetic study of anisole upgrading. International Journal of Energy Research, 2021, 45(6): 8267–8284
CrossRef
Google scholar
|
[50] |
Sirous-Rezaei P, Park Y K. Catalytic hydropyrolysis of lignin: Suppression of coke formation in mild hydrodeoxygenation of lignin-derived phenolics. Chemical Engineering Journal, 2020, 386: 121348
CrossRef
Google scholar
|
[51] |
Lonchay W, Bagnato G, Sanna A. Highly selective hydropyrolysis of lignin waste to benzene, toluene and xylene in presence of zirconia supported iron catalyst. Bioresource Technology, 2022, 361: 127727
CrossRef
Google scholar
|
[52] |
Afreen G, Mittal D, Upadhyayula S. Biomass-derived phenolics conversion to C10–C13 range fuel precursors over metal ion-exchanged zeolites: Physicochemical characterization of catalysts and process parameter optimization. Renewable Energy, 2020, 149: 489–507
CrossRef
Google scholar
|
[53] |
Zhang J, Mao D, Zhang H.
CrossRef
Google scholar
|
[54] |
Xue Y, Sharma A, Huo J.
CrossRef
Google scholar
|
[55] |
Yan P, Bryant G, Li M M J.
CrossRef
Google scholar
|
[56] |
Zheng N, Wang J. Distinctly different performances of two iron-doped charcoals in catalytic hydrocracking of pine wood hydropyrolysis vapor to methane or upgraded bio-oil. Energy & Fuels, 2020, 34(1): 546–556
CrossRef
Google scholar
|
[57] |
Guan H, Ding W, Liu S.
CrossRef
Google scholar
|
[58] |
Ji N, Cheng S, Jia Z.
CrossRef
Google scholar
|
[59] |
Gamliel D P, Bollas G M, Valla J A. Bifunctional Ni-ZSM-5 catalysts for the pyrolysis and hydropyrolysis of biomass. Energy Technology, 2017, 5(1): 172–182
CrossRef
Google scholar
|
[60] |
Yang Y, Ochoa-Hernández C, De La Peña O’Shea V A.
CrossRef
Google scholar
|
[61] |
Guo H, Zhao J, Chen Y.
CrossRef
Google scholar
|
[62] |
Hu Y, Li X, Liu M.
CrossRef
Google scholar
|
[63] |
Yan P, Tian X, Kennedy E M.
CrossRef
Google scholar
|
[64] |
Wang W, Zhang H, Zhou F.
CrossRef
Google scholar
|
[65] |
Chen C, Ji X, Xiong Y.
CrossRef
Google scholar
|
[66] |
Gong X, Li N, Li Y.
CrossRef
Google scholar
|
[67] |
Strapasson G B, Sousa L S, Báfero G B.
CrossRef
Google scholar
|
[68] |
Zhu L, Li W, Zhang H.
CrossRef
Google scholar
|
[69] |
Li X. Efficient hydrodeoxygenation of lignocellulose derivative oxygenates to aviation fuel range alkanes using Pd–Ru/hydroxyapatite catalysts. Fuel Processing Technology, 2022, 232: 107263
CrossRef
Google scholar
|
[70] |
Xia Q, Chen Z, Shao Y.
CrossRef
Google scholar
|
[71] |
Zhao M, Hu J, Wu S.
CrossRef
Google scholar
|
[72] |
Resende K A, Teles C A, Jacobs G.
CrossRef
Google scholar
|
[73] |
Zhao Y P, Wu F P, Song Q L.
CrossRef
Google scholar
|
[74] |
Shu R, Li R, Liu Y.
CrossRef
Google scholar
|
[75] |
Liu T, Tian Z, Zhang W.
CrossRef
Google scholar
|
[76] |
Sunil More G, Rajendra Kanchan D, Banerjee A.
CrossRef
Google scholar
|
[77] |
Li R, Qiu J, Chen H.
CrossRef
Google scholar
|
[78] |
Zhang J, Sun K, Li D.
CrossRef
Google scholar
|
[79] |
Liu X. In-situ studies on the synergistic effect of Pd–Mo bimetallic catalyst for anisole hydrodeoxygenation. Molecular Catalysis, 2022, 230: 112591
CrossRef
Google scholar
|
[80] |
Ding W, Li H, Zong R.
CrossRef
Google scholar
|
[81] |
Salakhum S, Yutthalekha T, Shetsiri S.
CrossRef
Google scholar
|
[82] |
Mortensen P M, Gardini D, Damsgaard C D.
CrossRef
Google scholar
|
[83] |
Chandler D S, Seufitelli G V S, Resende F L P. Catalytic route for the production of alkanes from hydropyrolysis of biomass. Energy & Fuels, 2020, 34(10): 12573–12585
CrossRef
Google scholar
|
[84] |
Li T, Su J, Wang H.
CrossRef
Google scholar
|
[85] |
Stummann M Z, Høj M, Davidsen B.
CrossRef
Google scholar
|
[86] |
Su J, Li T, Luo G.
CrossRef
Google scholar
|
[87] |
He C, Ruan T, Ouyang X.
CrossRef
Google scholar
|
[88] |
Miao F, Luo Z, Zhou Q.
CrossRef
Google scholar
|
[89] |
Khromova S A, Smirnov A A, Bulavchenko O A.
CrossRef
Google scholar
|
[90] |
Liu M, Zhang J, Zheng L.
CrossRef
Google scholar
|
[91] |
Blanco E, Carrales-Alvarado D, Belen Dongil A.
CrossRef
Google scholar
|
[92] |
Zhang Y, Wang W, Fan G.
CrossRef
Google scholar
|
[93] |
Zhang Y, Fan G, Yang L.
CrossRef
Google scholar
|
[94] |
Han Q, Rehman M U, Wang J.
CrossRef
Google scholar
|
[95] |
Lei X, Du X, Xin H.
CrossRef
Google scholar
|
[96] |
Jaswal A, Singh P P, Kar A K.
CrossRef
Google scholar
|
[97] |
Lu K L, Yin F, Wei X Y.
CrossRef
Google scholar
|
[98] |
Zhou M H, Xue Y Q, Ge F. MOF-derived NiM@C catalysts (M = Co, Mo, La) for in-situ hydrogenation/hydrodeoxygenation of lignin-derived phenols to cycloalkanes/COL. Fuel, 2022, 329: 125446
CrossRef
Google scholar
|
[99] |
Zhou X, Rauchfuss T B. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem, 2013, 6(2): 383–388
CrossRef
Google scholar
|
[100] |
LiL, NieX, ChenY, et al. Computational insights into the hydrodeoxygenation of phenolic compounds over Pt–Fe catalysts. Journal of Physical Chemistry, 2021, 125, 26: 14239–14252
|
[101] |
Liu X, An W, Wang Y.
CrossRef
Google scholar
|
[102] |
Konadu D, Kwawu C R, Tia R.
CrossRef
Google scholar
|
[103] |
Fraga G, Yin Y, Konarova M.
CrossRef
Google scholar
|
[104] |
Gao M, Tan H, Zhu P.
CrossRef
Google scholar
|
[105] |
Zhou J, An W, Wang Z.
CrossRef
Google scholar
|
[106] |
Nie X, Zhang Z, Wang H.
CrossRef
Google scholar
|
[107] |
Wu B, Li L, Wang H.
CrossRef
Google scholar
|
[108] |
Tan H, Rong S, Zhao R.
CrossRef
Google scholar
|
[109] |
Itthibenchapong V, Chakthranont P, Sattayanon C.
CrossRef
Google scholar
|
[110] |
Khan T S, Singh D, Samal P P.
CrossRef
Google scholar
|
[111] |
Yan P, Tian X, Kennedy E M.
CrossRef
Google scholar
|
[112] |
Liu R, An W, Stepped M. Stepped M@Pt(211) (M = Co, Fe, Mo) single-atom alloys promote the deoxygenation of lignin-derived phenolics: Mechanism, kinetics, and descriptors. Catalysis Science & Technology, 2021, 11(21): 7047–7059
CrossRef
Google scholar
|
[113] |
Tan Q, Wang G, Long A.
CrossRef
Google scholar
|
[114] |
Chia M, Pagán-Torres Y J, Hibbitts D.
CrossRef
Google scholar
|
[115] |
Tan Q, Wang G, Nie L.
CrossRef
Google scholar
|
[116] |
Deepa A K, Dhepe P L. Function of metals and supports on the hydrodeoxygenation of phenolic compounds. ChemPlusChem, 2014, 79(11): 1573–1583
CrossRef
Google scholar
|
[117] |
Runnebaum R C, Nimmanwudipong T, Block D E.
CrossRef
Google scholar
|
[118] |
Furimsky E. Catalytic hydrodeoxygenation. Applied Catalysis A, General, 2000, 199(2): 147–190
CrossRef
Google scholar
|
[119] |
Kanchan D R, Banerjee A. Linear scaling relationships for furan hydrodeoxygenation over transition metal and bimetallic surfaces. ChemSusChem, 2023, 16(18): e202300491
CrossRef
Google scholar
|
[120] |
Fang W, Liu S, Steffensen A K. On the role of Cu+ and CuNi alloy phases in mesoporous CuNi catalyst for furfural hydrogenation. ACS Catalysis, 2023, 13(13): 8437–8444
CrossRef
Google scholar
|
[121] |
Chen L, Shi Y, Chen C.
CrossRef
Google scholar
|
[122] |
Zhang Z, Zhang Z, Zhang X.
CrossRef
Google scholar
|
[123] |
Hamid A H, Ali L, Shittu T.
CrossRef
Google scholar
|
[124] |
Asada D, Ikeda T, Muraoka K.
CrossRef
Google scholar
|
[125] |
Banerjee A, Mushrif S H. Reaction pathways for the deoxygenation of biomass-pyrolysis-derived bio-oil on Ru: A DFT study using furfural as a model compound. ChemCatChem, 2017, 9(14): 2828–2838
CrossRef
Google scholar
|
[126] |
Wang X B, Xie Z Z, Guo L.
CrossRef
Google scholar
|
[127] |
Chen H, Liu J, Li W.
CrossRef
Google scholar
|
[128] |
Zhang J, Jia Z, Yu S.
CrossRef
Google scholar
|
[129] |
Pino N, Sitthisa S, Tan Q.
CrossRef
Google scholar
|
[130] |
Lin W, Chen Y, Zhang Y.
CrossRef
Google scholar
|
[131] |
Luo J, Cheng Y, Niu H.
CrossRef
Google scholar
|
[132] |
Zhao H, Liao X, Cui H.
CrossRef
Google scholar
|
[133] |
Yuan E, Wang C, Wu C.
CrossRef
Google scholar
|
[134] |
Šivec R, Huš M, Likozar B.
CrossRef
Google scholar
|
[135] |
Xue J, Wang Y, Meng Y.
CrossRef
Google scholar
|
[136] |
Liu W, Yang Y, Chen L.
CrossRef
Google scholar
|
[137] |
Shi Y. Exploring the reaction mechanisms of furfural hydrodeoxygenation on a CuNiCu(111) bimetallic catalyst surface from computation. ACS Omega, 2020, 5(29): 18040–18049
CrossRef
Google scholar
|
[138] |
Gunawan R, Cahyadi H S, Insyani R.
CrossRef
Google scholar
|
[139] |
Hsiao Y W, Zong X, Zhou J.
CrossRef
Google scholar
|
[140] |
Zhang Y, Zhan S, Liu K.
CrossRef
Google scholar
|
[141] |
Kim H, Yang S, Lim Y H.
CrossRef
Google scholar
|
[142] |
Redina E A, Vikanova K V, Kapustin G I.
CrossRef
Google scholar
|
[143] |
Kasabe M M, Kotkar V R, Dongare M K.
CrossRef
Google scholar
|
[144] |
Yung M M, Foo G S, Sievers C. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA. Catalysis Today, 2018, 302: 151–160
CrossRef
Google scholar
|
[145] |
Rong S, Tan H, Pang Z.
CrossRef
Google scholar
|
[146] |
Rios-Escobedo R, Ortiz-Santos E, Colín-Luna J A.
CrossRef
Google scholar
|
[147] |
Zanuttini M S, Gross M, Marchetti G.
CrossRef
Google scholar
|
[148] |
Guo L, Tian Y, He X.
CrossRef
Google scholar
|
[149] |
Wu X, Liu C, Wang H.
CrossRef
Google scholar
|
[150] |
Li T, Miao K, Zhao Z.
CrossRef
Google scholar
|
[151] |
Wang H, Li T, Su J.
CrossRef
Google scholar
|
[152] |
Geng Y, Li H. Hydrogen spillover-enhanced heterogeneously catalyzed hydrodeoxygenation for biomass upgrading, ChemSusChem, 2022, 15(8): e202102495
|
[153] |
Alayoglu S, An K, Melaet G.
CrossRef
Google scholar
|
[154] |
Ahmed F, Alam M K, Muira R.
CrossRef
Google scholar
|
[155] |
Messou D, Bernardin V, Meunier F.
CrossRef
Google scholar
|
[156] |
Zhang S, Xia Z, Zhang M.
CrossRef
Google scholar
|
[157] |
Shin H, Choi M, Kim H. A mechanistic model for hydrogen activation, spillover, and its chemical reaction in a zeolite-encapsulated Pt catalyst. Physical Chemistry Chemical Physics, 2016, 18(10): 7035–7041
CrossRef
Google scholar
|
[158] |
Newman C, Zhou X, Goundie B.
CrossRef
Google scholar
|
[159] |
Moogi S, Jae J, Kannapu H P R.
CrossRef
Google scholar
|
[160] |
Moogi S, Pyo S, Farooq A.
CrossRef
Google scholar
|
[161] |
Austin D, Wang A, He P.
CrossRef
Google scholar
|
[162] |
Peng H, Wang A, He P.
CrossRef
Google scholar
|
[163] |
Cheng Y T, Huber G W. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chemistry, 2012, 14(11): 3114
CrossRef
Google scholar
|
[164] |
He P, Shan W, Xiao Y.
CrossRef
Google scholar
|
[165] |
Wang A, Austin D, Qian H.
CrossRef
Google scholar
|
[166] |
Tshikesho R S, Kumar A, Huhnke R L.
CrossRef
Google scholar
|
[167] |
Wang A, Austin D, Song H. Investigations of thermochemical upgrading of biomass and its model compounds: Opportunities for methane utilization. Fuel, 2019, 246: 443–453
CrossRef
Google scholar
|
[168] |
Tang P, Zhu Q, Wu Z.
CrossRef
Google scholar
|
[169] |
Doan H A, Wang X, Snurr R Q. Computational screening of supported metal oxide nanoclusters for methane activation: Insights into homolytic versus heterolytic C–H bond dissociation. Journal of Physical Chemistry Letters, 2023, 14(21): 5018–5024
CrossRef
Google scholar
|
[170] |
Xu Y, Liu S, Guo X.
CrossRef
Google scholar
|
[171] |
Xu J, Zheng A, Wang X.
CrossRef
Google scholar
|
[172] |
Luzgin M V, Rogov V A, Arzumanov S S.
CrossRef
Google scholar
|
[173] |
Gabrienko A A, Arzumanov S S, Luzgin M V.
CrossRef
Google scholar
|
[174] |
Wang A, Song H. Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation. Bioresource Technology, 2018, 268: 505–513
CrossRef
Google scholar
|
[175] |
He P, Wang A, Meng S.
CrossRef
Google scholar
|
[176] |
Wang A, Austin D, Karmakar A.
CrossRef
Google scholar
|
[177] |
Du L, Luo Z, Wang K.
CrossRef
Google scholar
|
[178] |
Li S, Liu B, Truong J.
CrossRef
Google scholar
|
[179] |
Lu Q, Yang X, Zhu X. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 191–198
CrossRef
Google scholar
|
[180] |
Pidtasang B, Sukkasi S, Pattiya A. Effect of in-situ addition of alcohol on yields and properties of bio-oil derived from fast pyrolysis of eucalyptus bark. Journal of Analytical and Applied Pyrolysis, 2016, 120: 82–93
CrossRef
Google scholar
|
[181] |
Kim Y M, Jae J, Kim B S.
CrossRef
Google scholar
|
[182] |
Ahmed M H M, Batalha N, Mahmudul H M D.
CrossRef
Google scholar
|
[183] |
Wu P, Zhao D, Lu G.
CrossRef
Google scholar
|
[184] |
Alemán-Vázquez L O, Cano-Domínguez J L, García-Gutiérrez J L. Effect of tetralin, decalin and naphthalene as hydrogen donors in the upgrading of heavy oils. Procedia Engineering, 2012, 42: 532–539
CrossRef
Google scholar
|
[185] |
Shafaghat H, Lee I G, Jae J.
CrossRef
Google scholar
|
[186] |
Boscagli C, Raffelt K, Grunwaldt J D. Reactivity of platform molecules in pyrolysis oil and in water during hydrotreatment over nickel and ruthenium catalysts. Biomass and Bioenergy, 2017, 106: 63–73
CrossRef
Google scholar
|
[187] |
Boscagli C, Yang C, Welle A.
CrossRef
Google scholar
|
[188] |
Ambursa M M, Juan J C, Yahaya Y.
CrossRef
Google scholar
|
[189] |
Lan X, Hensen E J M, Weber T. Hydrodeoxygenation of guaiacol over Ni2P/SiO2–reaction mechanism and catalyst deactivation. Applied Catalysis A, General, 2018, 550: 57–66
CrossRef
Google scholar
|
[190] |
Khanh TranQVu Ly HAnh VoT,
|
[191] |
Tian Y, Guo L, Qiao C.
CrossRef
Google scholar
|
[192] |
Chen S, Yan P, Yu X.
CrossRef
Google scholar
|
[193] |
Hita I, Cordero-Lanzac T, Kekäläinen T.
CrossRef
Google scholar
|
[194] |
Cordero-Lanzac T, Palos R, Hita I.
CrossRef
Google scholar
|
[195] |
Wu T, Dang Q, Wu Y.
CrossRef
Google scholar
|
[196] |
Wang J, Jiang J, Li D.
CrossRef
Google scholar
|
[197] |
Liu Y, Chen L, Chen Y.
CrossRef
Google scholar
|
[198] |
Ma D, Lu S, Liu X.
CrossRef
Google scholar
|
[199] |
Li R, Zhao Z, Zhang B.
CrossRef
Google scholar
|
[200] |
Onwudili J A, Scaldaferri C A. Catalytic upgrading of intermediate pyrolysis bio-oil to hydrocarbon-rich liquid biofuel via a novel two-stage solvent-assisted process. Fuel, 2023, 352: 129015
CrossRef
Google scholar
|
2,5-DMF | 2,5-dimethylfuran |
4-MP | 4-methylphenol |
5-HMF | 5-hydroxymethylfurfural |
5-MFA | 5-methylfurfuryl alcohol |
5-MFF | 5-methylfurfural |
BTEX | Benzene, toluene, ethylbenzene and xylenes |
CHA | Cyclohexane |
CTH | Catalytic transfer hydrogenaration |
DCO | Decarboxylation and/or decarbonylation |
DDO | Direct deoxygenation |
DFT | Density functional theory |
DME | Demethylation |
DMO | Demethoxylation |
FA | Furfuryl alcohol |
FF | Furfrual |
H/C | Hydrogen to carbon ratio |
HAD | Hydroxyalkylation |
HCR | Hydrocracking |
HDO | Hydrodeoxygenation |
HHV | Higher heating value |
HYD | Hydrogenation |
MCH | Methylcyclohexane |
MF | Methylfuran |
MMP | 2-methoxy-4-methylphenol |
MTHF | Methyltetrahydrofuran |
Ov | Oxygen vacancy |
THFA | Tetrahydrofurfuryl alcohol |
/
〈 | 〉 |