Highlights of mainstream solar cell efficiencies in 2023

Wenzhong SHEN, Yixin ZHAO, Feng LIU

PDF(387 KB)
PDF(387 KB)
Front. Energy ›› 2024, Vol. 18 ›› Issue (1) : 8-15. DOI: 10.1007/s11708-024-0937-5
HIGHLIGHTS

Highlights of mainstream solar cell efficiencies in 2023

Author information +
History +

Cite this article

Download citation ▾
Wenzhong SHEN, Yixin ZHAO, Feng LIU. Highlights of mainstream solar cell efficiencies in 2023. Front. Energy, 2024, 18(1): 8‒15 https://doi.org/10.1007/s11708-024-0937-5

References

[1]
Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2021. Frontiers in Energy, 2022, 16(1): 1–8
CrossRef Google scholar
[2]
Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2022. Frontiers in Energy, 2023, 17(1): 9–15
CrossRef Google scholar
[3]
JinkoSolarWebsite. JinkoSolar sets new records for cell, module, and tandem efficiency successively. 2023-11-10
[4]
LONGiWebsite. LONGi sets a new world record of 27.09% for the efficiency of silicon heterojunction back-contact (HBC) solar cells. 2023–12-19
[5]
Schmidt J, Peibst R, Brendel R. Surface passivation of crystalline silicon solar cells: Present and future. Solar Energy Materials and Solar Cells, 2018, 187: 39–54
CrossRef Google scholar
[6]
Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics, 2013, 3(4): 1184–1191
CrossRef Google scholar
[7]
Aberle A G, Glunz S W, Stephens A W. . High efficiency silicon solar cell: Si/SiO2 interface parameters and their impact on device performance. Progress in Photovoltaics: Research and Applications, 1994, 2(4): 265–273
CrossRef Google scholar
[8]
Fırat M, Sivaramakrishnan Radhakrishnan H, Singh S. . Industrial metallization of fired passivating contacts for n-type tunnel oxide passivated contact (n-TOPCon) solar cells. Solar Energy Materials and Solar Cells, 2022, 240: 111692
CrossRef Google scholar
[9]
Kruse C N, Wolf M, Schinke C. . Impact of contacting geometries when measuring fill factors of solar cell current-voltage characteristics. IEEE Journal of Photovoltaics, 2017, 7(3): 747–754
CrossRef Google scholar
[10]
Chen K J, Hartweg B, Woodhouse M. . Self-aligned selective area front contacts on poly-Si/SiOx passivating contact c-Si solar cells. IEEE Journal of Photovoltaics, 2022, 12(3): 678–689
CrossRef Google scholar
[11]
Ding D, Lu G L, Li Z P. . High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts. Solar Energy, 2019, 193: 494–501
CrossRef Google scholar
[12]
Richter A, Benick J, Müller R. . Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26(8): 579–586
CrossRef Google scholar
[13]
Lin W, Chen D, Liu C. . Green-laser-doped selective emitters with separate BBr3 diffusion processes for high-efficiency n-type silicon solar cells. Solar Energy Materials and Solar Cells, 2020, 210: 110462
CrossRef Google scholar
[14]
Xiao M L, Yang Z H, Liu Z K. . SiOx/polysilicon selective emitter prepared by PECVD-deposited amorphous silicon plus one-step firing enabling excellent J0,met of < 235 fA/cm2 and ρc of < 2 mΩ∙cm2. Solar Energy, 2023, 262: 111887
CrossRef Google scholar
[15]
Großer S, Krassowski E, Swatek S. . Microscale contact formation by laser enhanced contact optimization. IEEE Journal of Photovoltaics, 2022, 12(1): 26–29
CrossRef Google scholar
[16]
Fellmeth T, Höffler H, Mack S. . Laser-enhanced contact optimization on iTOPCon solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30(12): 1393–1399
CrossRef Google scholar
[17]
Padhamnath P, Khanna A, Balaji N. . Progress in screen-printed metallization of industrial solar cells with SiOx/poly-Si passivating contacts. Solar Energy Materials and Solar Cells, 2020, 218: 110751
CrossRef Google scholar
[18]
Steinhauser B, Polzin J I, Feldmann F. . Excellent surface passivation quality on crystalline silicon using industrial-scale direct-plasma TOPCon deposition technology. Solar RRL, 2018, 2(7): 1800068
CrossRef Google scholar
[19]
Lin H, Yang M, Ru X. . Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nature Energy, 2023, 8(8): 789–799
CrossRef Google scholar
[20]
Yu C, Gao K, Peng C W. . Industrial-scale deposition of nanocrystalline silicon oxide for 26.4%-efficient silicon heterojunction solar cells with copper electrodes. Nature Energy, 2023, 8(12): 1375–1385
CrossRef Google scholar
[21]
Yu J, Li J, Zhao Y. . Copper metallization of electrodes for silicon heterojunction solar cells: Process, reliability and challenges. Solar Energy Materials and Solar Cells, 2021, 224: 110993
CrossRef Google scholar
[22]
NationalRenewable Energy Laboratory (NREL). Best research—Cell efficiency chart. 2024, available at website of NREL
[23]
Green M A, Dunlop E D, Siefer G. . Solar cell efficiency tables (version 61). Progress in Photovoltaics: Research and Applications, 2023, 31(1): 3–16
CrossRef Google scholar
[24]
Park J, Kim J, Yun H S. . Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616(7958): 724–730
CrossRef Google scholar
[25]
Green M A, Dunlop E D, Yoshita M. . Solar cell efficiency tables (version 62). Progress in Photovoltaics: Research and Applications, 2023, 31(7): 651–663
CrossRef Google scholar
[26]
Zhao Y, Ma F, Qu Z. . Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531–534
CrossRef Google scholar
[27]
Green M A, Dunlop E D, Yoshita M. . Solar cell efficiency tables (version 63). Progress in Photovoltaics: Research and Applications, 2024, 32(1): 3–13
CrossRef Google scholar
[28]
Peng W, Mao K, Cai F. . Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science, 2023, 379(6633): 683–690
CrossRef Google scholar
[29]
Liu C, Yang Y, Chen H. . Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science, 2023, 382(6672): 810–815
CrossRef Google scholar
[30]
Zhang S, Ye F, Wang X. . Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science, 2023, 380(6643): 404–409
CrossRef Google scholar
[31]
Li Z, Sun X, Zheng X. . Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science, 2023, 382(6668): 284–289
CrossRef Google scholar
[32]
Park S M, Wei M, Lempesis N. . Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature, 2023, 624(7991): 289–294
CrossRef Google scholar
[33]
Yu S, Xiong Z, Zhou H. . Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science, 2023, 382(6677): 1399–1404
CrossRef Google scholar
[34]
Aydin E, Ugur E, Yildirim B K. . Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature, 2023, 623(7988): 732–738
CrossRef Google scholar
[35]
LiJLiangHXiaoC, . Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nature Energy, 2024, early access, doi:10.1038/s41560-023-01442-1
[36]
Ding Y, Ding B, Kanda H. . Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17(6): 598–605
CrossRef Google scholar
[37]
Li H, Zhang W. Perovskite tandem solar cells: From fundamentals to commercial deployment. Chemical Reviews, 2020, 120(18): 9835–9950
CrossRef Google scholar
[38]
Wu P, Thrithamarassery Gangadharan D, Saidaminov M I. . A roadmap for efficient and stable all-perovskite tandem solar cells from a chemistry perspective. ACS Central Science, 2023, 9(1): 14–26
CrossRef Google scholar
[39]
Lin R, Wang Y, Lu Q. . All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature, 2023, 620(7976): 994–1000
CrossRef Google scholar
[40]
King Abdullah University of Science and Technology (KAUST). KAUST team sets world record for tandem solar cell efficiency. 2023–4-16, available at website of KAUST
[41]
EmilianoB. KAUST claims 33.7% efficiency for perovskite/silicon tandem solar cell. 2023-5-30, available at website of PV-Magazine
[42]
LONGiWebsite. LONGi sets a new world record of 33.9% for the efficiency of crystalline silicon-perovskite tandem solar cells. 2023–11-3
[43]
De Wolf S, Aydin E. Tandems have the power. Science, 2023, 381(6653): 30–31
CrossRef Google scholar
[44]
Aydin E, Allen T G, De Bastiani M. . Pathways toward commercial perovskite/silicon tandem photovoltaics. Science, 2024, 383(6679): eadh3849
CrossRef Google scholar
[45]
Yamamoto K, Mishima R, Uzu H. . High efficiency perovskite/heterojunction crystalline silicon tandem solar cells: Towards industrial-sized cell and module. Japanese Journal of Applied Physics, 2023, 62(SK): SK1021
CrossRef Google scholar
[46]
OxfordPV Website. Oxford PV sets new solar cell world record. 2023-5-24
[47]
Chen T, Li S, Li Y. . Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Advanced Materials, 2023, 35(21): 2300400
CrossRef Google scholar
[48]
Bi P, Wang J, Cui Y. . Enhancing photon utilization efficiency for high‐performance organic photovoltaic cells via regulating phase‐transition kinetics. Advanced Materials, 2023, 35(16): 2210865
CrossRef Google scholar
[49]
Zhu L, Zhang M, Xu J. . Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21(6): 656–663
CrossRef Google scholar
[50]
Chen X K, Qian D, Wang Y. . A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6(8): 799–806
CrossRef Google scholar
[51]
Li C, Zhou J, Song J. . Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6(6): 605–613
CrossRef Google scholar
[52]
Zeng R, Zhu L, Zhang M. . All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle. Nature Communications, 2023, 14(1): 4148
CrossRef Google scholar
[53]
NationalRenewable Energy Laboratory (NREL). Champion photovoltaic module efficiency chart. 2024
[54]
ValerieT. German researchers claim record-breaking 14.46% efficiency for organic PV module. 2023-12-19, available at website of PV-Magazine
[55]
Liang Y, Zhang D, Wu Z. . Organic solar cells using oligomer acceptors for improved stability and efficiency. Nature Energy, 2022, 7(12): 1180–1190
CrossRef Google scholar
[56]
IEC 61215-2:2021. Terrestrial photovoltaic (PV) modules — design qualification and type approval: Part 2: Test procedures. 2021–2-24, available at website of IEC

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (Grant No. 2022YFB4200101), the Inner Mongolia Science and Technology Project, China (No. 2022JBGS0036) and the National Natural Science Foundation of China (Grant Nos. 52325306, 11834011, 11974242, and 22025505).

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(387 KB)

Accesses

Citations

Detail

Sections
Recommended

/