Recent progress in Prussian blue electrode for electrochromic devices
Yongting ZHANG, Wanzhong LI, Hui GONG, Qianqian ZHANG, Liang YAN, Hao WANG
Recent progress in Prussian blue electrode for electrochromic devices
Great progress has been made in the electrochromic (EC) technology with potential applications in various fields. As one of the most promising EC materials, Prussian blue (PB) has attracted great attention due to its excellent EC performance, such as low cost, easy synthesis, rich color states, chemical stability, suitable redox potential, and fast color-switching kinetics. This review summarizes the recent progress in PB electrodes and devices, including several typical preparation techniques of PB electrodes, as well as the recent key strategies for enhancing EC performance of PB electrodes. Specifically, PB-based electrochromic devices (ECDs) have been widely used in various fields, such as smart windows, electrochromic energy storage devices (EESDs), wearable electronics, smart displays, military camouflage, and other fields. Several opportunities and obstacles are suggested for advancing the development of PB-based ECDs. This comprehensive review is expected to offer valuable insights for the design and fabrication of sophisticated PB-based ECDs, enabling their practical integration into real-world applications.
Prussian blue / electrochromism / energy storage / smart windows
[1] |
Lang A W, Li Y, De Keersmaecker M.
CrossRef
Google scholar
|
[2] |
Davy N C, Sezen-Edmonds M, Gao J.
CrossRef
Google scholar
|
[3] |
Zhou Y, Dong X, Mi Y.
CrossRef
Google scholar
|
[4] |
Wang K, Wu H, Meng Y.
CrossRef
Google scholar
|
[5] |
Huang Y, Zhu M, Huang Y.
CrossRef
Google scholar
|
[6] |
Wang J, Zhang L, Yu L.
CrossRef
Google scholar
|
[7] |
Liangmiao Z, Yi D, Fang X.
|
[8] |
Dong Sik K, Yong Hui L, Jung Wook K.
|
[9] |
Cai G, Wang J, Lee P S. Next-generation multifunctional electrochromic devices. Accounts of Chemical Research, 2016, 49(8): 1469–1476
CrossRef
Google scholar
|
[10] |
Lei L, Chen L, Mengying W.
|
[11] |
Ware M. Prussian blue: Artists’ pigment and chemists’ sponge. Journal of Chemical Education, 2008, 85(5): 612
CrossRef
Google scholar
|
[12] |
Ludi A. Prussian blue, an inorganic evergreen. Journal of Chemical Education, 1981, 58(12): 1013
CrossRef
Google scholar
|
[13] |
Ellis D, Eckhoff M, Neff V D. Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. Journal of Physical Chemistry, 1981, 85(9): 1225–1231
CrossRef
Google scholar
|
[14] |
Neff V D. Electrochemical oxidation and reduction of thin films of Prussian blue. Journal of the Electrochemical Society, 1978, 125(6): 886–887
CrossRef
Google scholar
|
[15] |
Itaya K, Ataka T, Toshima S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. Journal of the American Chemical Society, 1982, 104(18): 4767–4772
CrossRef
Google scholar
|
[16] |
Itaya K, Akahoshi H, Toshima S. Electrochemistry of Prussian blue modified electrodes: An electrochemical preparation method. Journal of the Electrochemical Society, 1982, 129(7): 1498–1500
CrossRef
Google scholar
|
[17] |
Su D, Cortie M, Fan H.
CrossRef
Google scholar
|
[18] |
Wang R Y, Wessells C D, Huggins R A.
CrossRef
Google scholar
|
[19] |
DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004, 14(3): 224–232
CrossRef
Google scholar
|
[20] |
Jiao Z, Wang J, Ke L.
CrossRef
Google scholar
|
[21] |
Song J, Huang B, Liu S.
CrossRef
Google scholar
|
[22] |
Li Z, Zhao Y, Xiao Y.
CrossRef
Google scholar
|
[23] |
Li Z, Tang Y, Zhou K.
CrossRef
Google scholar
|
[24] |
Stilwell D E, Park K H, Miles M H. Electrochemical studies of the factors influencing the cycle stability of Prussian blue films. Journal of Applied Electrochemistry, 1992, 22(4): 325–331
CrossRef
Google scholar
|
[25] |
Wang K, Zhang H, Chen G.
CrossRef
Google scholar
|
[26] |
Chaudhary A, Pathak D K, Ghosh T.
CrossRef
Google scholar
|
[27] |
Kim D S, Park H, Hong S Y.
CrossRef
Google scholar
|
[28] |
Fan M S, Kao S Y, Chang T H.
CrossRef
Google scholar
|
[29] |
Huang B, Song J, Zhong J.
CrossRef
Google scholar
|
[30] |
Kim S, Choi J. Photoelectrochemical anodization for the preparation of a thick tungsten oxide film. Electrochemistry Communications, 2012, 17: 10–13
CrossRef
Google scholar
|
[31] |
Fang Y, Sun X, Cao H. Influence of PEG additive and annealing temperature on structural and electrochromic properties of sol-gel derived WO3 films. Journal of Sol-Gel Science and Technology, 2011, 59(1): 145–152
CrossRef
Google scholar
|
[32] |
Cheng K C, Chen F R, Kai J J. Electrochromic property of nano-composite Prussian blue based thin film. Electrochimica Acta, 2007, 52(9): 3330–3335
CrossRef
Google scholar
|
[33] |
Chen Y, Bi Z, Li X.
CrossRef
Google scholar
|
[34] |
Xu H, Gong L, Zhou S.
CrossRef
Google scholar
|
[35] |
Xu M, Wang S, Zhou S.
CrossRef
Google scholar
|
[36] |
Kumar S S, Joseph J, Phani K L. Novel method for deposition of gold−Prussian blue nanocomposite films induced by electrochemically formed gold nanoparticles: Characterization and application to electrocatalysis. Chemistry of Materials, 2007, 19(19): 4722–4730
CrossRef
Google scholar
|
[37] |
Wang Y, Gong Z, Zeng Y.
CrossRef
Google scholar
|
[38] |
Xu M, Wang S, Zhou S.
CrossRef
Google scholar
|
[39] |
Tang D, Wang J, Liu X A.
CrossRef
Google scholar
|
[40] |
Nossol E, Zarbin A J G. A simple and innovative route to prepare a novel carbon nanotube/Prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Advanced Functional Materials, 2009, 19(24): 3980–3995
CrossRef
Google scholar
|
[41] |
Ji X, Ren J, Ni R.
CrossRef
Google scholar
|
[42] |
Chi Q, Dong S. Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition. Analytica Chimica Acta, 1995, 310(3): 429–436
CrossRef
Google scholar
|
[43] |
Ho K C, Chen C Y, Hsu H C.
CrossRef
Google scholar
|
[44] |
Zhai C, Sun X, Zhao W.
CrossRef
Google scholar
|
[45] |
Song Y, Zhang M, Wang L.
CrossRef
Google scholar
|
[46] |
Karyakin A A, Karyakina E E, Gorton L. Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Analytical Chemistry, 2000, 72(7): 1720–1723
CrossRef
Google scholar
|
[47] |
Isfahani V B, Memarian N, Dizaji H R.
CrossRef
Google scholar
|
[48] |
Fu Z, Wei Y, Liu W.
CrossRef
Google scholar
|
[49] |
Sekhavat M S, Ghodsi F E. Improving the electrochromic performance of Prussian blue (PB) thin films by using an innovative electrothermophoresis method. Journal of Materials Research, 2023, 38(10): 2852–2862
CrossRef
Google scholar
|
[50] |
Lopes L C, Husmann S, Zarbin A J G. Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: A multifunctional material for transparent aqueous K-ion battery or electrochromic device. Electrochimica Acta, 2020, 345: 136199
CrossRef
Google scholar
|
[51] |
Ojha M, Pal M, Deepa M. Variable-tint electrochromic supercapacitor with a benzyl hexenyl viologen—Prussian blue architecture and ultralong cycling life. ACS Applied Electronic Materials, 2023, 5(4): 2401–2413
CrossRef
Google scholar
|
[52] |
Pham N S, Nguyen L T, Nguyen H T.
CrossRef
Google scholar
|
[53] |
Pham N S, Seo Y H, Park E.
CrossRef
Google scholar
|
[54] |
Zhang W, Li H, Elezzabi A Y. A dual-mode electrochromic platform integrating zinc anode-based and rocking-chair electrochromic devices. Advanced Functional Materials, 2023, 33(24): 2300155
CrossRef
Google scholar
|
[55] |
Ding Y, Wang M, Mei Z.
CrossRef
Google scholar
|
[56] |
Su Y, Wang Y, Lu Z.
CrossRef
Google scholar
|
[57] |
Ma Q, Chen J, Zhang H.
CrossRef
Google scholar
|
[58] |
Chu J, Li X, Cheng Y.
CrossRef
Google scholar
|
[59] |
Qian J, Ma D, Xu Z.
CrossRef
Google scholar
|
[60] |
Yang Y, Peng Y, Jian Z.
CrossRef
Google scholar
|
[61] |
Hong S F, Chen L C. Nano-Prussian blue analogue/PEDOT: PSS composites for electrochromic windows. Solar Energy Materials and Solar Cells, 2012, 104: 64–74
CrossRef
Google scholar
|
[62] |
Shiozaki H, Kawamoto T, Tanaka H.
CrossRef
Google scholar
|
[63] |
Jeong C Y, Kubota T, Tajima K.
CrossRef
Google scholar
|
[64] |
Tajima K, Watanabe H, Nishino M.
CrossRef
Google scholar
|
[65] |
Jeong C Y, Kubota T, Tajima K. Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications. RSC Advances, 2021, 11(46): 28614–28620
CrossRef
Google scholar
|
[66] |
Shen X, Wu S, Liu Y.
CrossRef
Google scholar
|
[67] |
Ming H, Torad N L K, Chiang Y D.
CrossRef
Google scholar
|
[68] |
Ishizaki M, Kanaizuka K, Abe M.
CrossRef
Google scholar
|
[69] |
Wang J Y, Wang M C, Jan D J. Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices. Solar Energy Materials and Solar Cells, 2017, 160: 476–483
CrossRef
Google scholar
|
[70] |
Liao T C, Chen W H, Liao H Y.
CrossRef
Google scholar
|
[71] |
Ding Y, Sun H, Li Z.
CrossRef
Google scholar
|
[72] |
Demiri S, Najdoski M, Velevska J. A simple chemical method for deposition of electrochromic Prussian blue thin films. Materials Research Bulletin, 2011, 46(12): 2484–2488
CrossRef
Google scholar
|
[73] |
Elshorbagy M H, Ramadan R, Abdelhady K. Preparation and characterization of spray-deposited efficient Prussian blue electrochromic thin film. Optik, 2017, 129: 130–139
CrossRef
Google scholar
|
[74] |
Kim J H, Park S, Ahn J.
CrossRef
Google scholar
|
[75] |
Wojdeł J C. First principles calculations on the influence of water-filled cavities on the electronic structure of Prussian blue. Journal of Molecular Modeling, 2009, 15(6): 567–572
CrossRef
Google scholar
|
[76] |
Liu X, Zhou A, Dou Y.
CrossRef
Google scholar
|
[77] |
Cong S, Tian Y, Li Q.
CrossRef
Google scholar
|
[78] |
Ko J H, Yeo S, Park J H.
CrossRef
Google scholar
|
[79] |
Nossol E, Zarbin A J G. Electrochromic properties of carbon nanotubes/Prussian blue nanocomposite films. Solar Energy Materials and Solar Cells, 2013, 109: 40–46
CrossRef
Google scholar
|
[80] |
Talagaeva N V, Zolotukhina E V, Bezverkhyy I.
CrossRef
Google scholar
|
[81] |
DeLongchamp D M, Hammond P T. Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian blue nanocomposite thin films. Chemistry of Materials, 2004, 16(23): 4799–4805
CrossRef
Google scholar
|
[82] |
Liu Z, Yang J, Leftheriotis G.
CrossRef
Google scholar
|
[83] |
Cai H, Chen Z, Guo S.
CrossRef
Google scholar
|
[84] |
Xu G, Han Y, Li X.
CrossRef
Google scholar
|
[85] |
Yue Y, Li H, Li K.
CrossRef
Google scholar
|
[86] |
Sun B, Liu Z, Li W.
CrossRef
Google scholar
|
[87] |
Chen K C, Hsu C Y, Hu C W.
CrossRef
Google scholar
|
[88] |
Chaudhary A, Pathak D K, Tanwar M.
CrossRef
Google scholar
|
[89] |
Bi Z, Li X, Chen Y.
CrossRef
Google scholar
|
[90] |
Assis L M N, Sabadini R C, Santos L P.
CrossRef
Google scholar
|
[91] |
Lu H C, Kao S Y, Chang T H.
CrossRef
Google scholar
|
[92] |
Cai G, Cui M, Kumar V.
CrossRef
Google scholar
|
[93] |
Weng D, Li M, Zheng J.
CrossRef
Google scholar
|
[94] |
Lin C F, Hsu C Y, Lo H C.
CrossRef
Google scholar
|
[95] |
Chen K C, Hsu C Y, Hu C W.
CrossRef
Google scholar
|
[96] |
Liu B J W, Zheng J, Wang J L.
CrossRef
Google scholar
|
[97] |
Jiao Z, Wang J, Ke L.
CrossRef
Google scholar
|
[98] |
Ahmadian-Alam L, Jahangiri F, Mahdavi H. Fabrication and assessment of an electrochromic and radar-absorbent dual device based on the new smart polythiophene-based/RGO/Fe3O4 ternary nanocomposite. Chemical Engineering Journal, 2021, 422: 130159
CrossRef
Google scholar
|
[99] |
Wen R T, Granqvist C G, Niklasson G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015, 14(10): 996–1001
CrossRef
Google scholar
|
[100] |
Mjejri I, Rougier A. Color switching in V3O7·H2O films cycled in Li and Na based electrolytes: Novel vanadium oxide based electrochromic materials. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(11): 3631–3638
CrossRef
Google scholar
|
[101] |
Wang Y, Wang S, Wang X.
CrossRef
Google scholar
|
[102] |
Zhang D, Wang J, Tong Z.
CrossRef
Google scholar
|
[103] |
Zhou K, Wang H, Jiu J.
CrossRef
Google scholar
|
[104] |
Ding Y, Wang M, Mei Z.
CrossRef
Google scholar
|
[105] |
Li H, Zhang W, Elezzabi A Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Advanced Materials, 2020, 32(43): 2003574
CrossRef
Google scholar
|
[106] |
Li J, Yang P, Li X.
CrossRef
Google scholar
|
[107] |
Kim Y, Han M, Kim J.
CrossRef
Google scholar
|
[108] |
Li H, Elezzabi A Y. Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horizons, 2020, 5(4): 691–695
CrossRef
Google scholar
|
[109] |
Zhang H, Yu Y, Zhang L.
CrossRef
Google scholar
|
[110] |
Nanda O, Gupta N, Grover R.
CrossRef
Google scholar
|
[111] |
Wang J, Zhang L, Yu L.
CrossRef
Google scholar
|
[112] |
Wang B, Cui M, Gao Y.
CrossRef
Google scholar
|
[113] |
Zhang H, Feng J, Sun F.
CrossRef
Google scholar
|
[114] |
Luo Y, Jin H, Lu Y.
CrossRef
Google scholar
|
[115] |
Zhao F, Zhao J, Zhang Y.
CrossRef
Google scholar
|
[116] |
Rathod P V, Puguan J M C, Kim H. Self-bleaching dual responsive poly(ionic liquid) with optical bistability toward climate-adaptable solar modulation. Chemical Engineering Journal, 2021, 422: 130065
CrossRef
Google scholar
|
[117] |
Watanabe Y, Nagashima T, Nakamura K.
CrossRef
Google scholar
|
[118] |
Kobayashi N, Miura S, Nishimura M.
CrossRef
Google scholar
|
[119] |
Yu H, Shao S, Yan L.
CrossRef
Google scholar
|
[120] |
Tajima K, Jeong C Y, Kubota T.
CrossRef
Google scholar
|
[121] |
Macher S, Schott M, Dontigny M.
CrossRef
Google scholar
|
/
〈 | 〉 |