From seawater to hydrogen via direct photocatalytic vapor splitting: A review on device design and system integration
Hongxia LI, Khaja WAHAB AHMED, Mohamed A. ABDELSALAM, Michael FOWLER, Xiao-Yu WU
From seawater to hydrogen via direct photocatalytic vapor splitting: A review on device design and system integration
Solar-driven hydrogen production from seawater attracts great interest for its emerging role in decarbonizing global energy consumption. Given the complexity of natural seawater content, photocatalytic vapor splitting offers a low-cost and safe solution, but with a very low solar-to-hydrogen conversion efficiency. With a focus on cutting-edge photothermal–photocatalytic device design and system integration, the recent research advances on vapor splitting from seawater, as well as industrial implementations in the past decades were reviewed. In addition, the design strategies of the key processes were reviewed, including vapor temperature and pressure control during solar thermal vapor generation from seawater, capillary-fed vaporization with salt repellent, and direct photocatalytic vapor splitting for hydrogen production. Moreover, the existing laboratory-scale and industrial-scale systems, and the integration principles and remaining challenges in the future seawater-to-hydrogen technology were discussed.
seawater / hydrogen / photocatalytic / vapor splitting / solar-driven
[1] |
InternationalEnergy Agency. Global hydrogen review 2021. 2023–10–6, available at website of IEA
|
[2] |
HausmannJ N, Schlögl R, MenezesP W, et al. Is direct seawater splitting economically meaningful? Energy & Environmental Science, 2021, 14(7): 3679–3685 10.1039/D0EE03659E
|
[3] |
Guo J, Zheng Y, Hu Z.
CrossRef
Google scholar
|
[4] |
KhanM A, Al-Attas T, RoyS, et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy & Environmental Science, 2021, 14(9): 4831–4839 10.1039/D1EE00870F
|
[5] |
Kronawitter C X, Vayssieres L, Shen S.
CrossRef
Google scholar
|
[6] |
XuSYuB. Current development and prospect of hydrogen energy technology in China. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(6): 1-12 (in Chinese)
|
[7] |
Davenport D M, Deshmukh A, Werber J R.
CrossRef
Google scholar
|
[8] |
Fujiwara M, Kikuchi M. Solar desalination of seawater using double-dye-modified PTFE membrane. Water Research, 2017, 127: 96–103
CrossRef
Google scholar
|
[9] |
Shaheen A, AlBadi S, Zhuman B.
CrossRef
Google scholar
|
[10] |
Lee A, Elam J W, Darling S B. Membrane materials for water purification: Design, development, and application. Environmental Science: Water Research & Technology, 2016, 2(1): 17–42
CrossRef
Google scholar
|
[11] |
Stoll T, Zafeiropoulos G, Tsampas M N. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants. International Journal of Hydrogen Energy, 2016, 41(40): 17807–17817
CrossRef
Google scholar
|
[12] |
Döscher H, Geisz J F, Deutsch T G.
CrossRef
Google scholar
|
[13] |
Gopinath C S, Nalajala N. A scalable and thin film approach for solar hydrogen generation: A review on enhanced photocatalytic water splitting. Journal of Materials Chemistry, A.Materials for Energy and Sustainability, 2021, 9(3): 1353–1371
CrossRef
Google scholar
|
[14] |
Guo L, Chen Y, Su J.
CrossRef
Google scholar
|
[15] |
Zhang J, Hu W, Cao S.
CrossRef
Google scholar
|
[16] |
Pang X, Das S, Davis J T.
CrossRef
Google scholar
|
[17] |
Yao Y, Gao X, Meng X. Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46(13): 9087–9100
CrossRef
Google scholar
|
[18] |
Alketbi A S, Raza A, Sajjad M.
CrossRef
Google scholar
|
[19] |
Tao F, Green M, Garcia A V.
CrossRef
Google scholar
|
[20] |
Zhou L, Li X, Ni G W.
CrossRef
Google scholar
|
[21] |
Zhu L, Gao M, Peh C K N.
CrossRef
Google scholar
|
[22] |
He H, Song Z, Lan Y.
CrossRef
Google scholar
|
[23] |
Goto Y, Hisatomi T, Wang Q.
CrossRef
Google scholar
|
[24] |
Hisatomi T, Maeda K, Takanabe K.
CrossRef
Google scholar
|
[25] |
Nishioka S, Osterloh F E, Wang X.
|
[26] |
Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53(1): 115–129
CrossRef
Google scholar
|
[27] |
Gao M, Peh C K, Zhu L.
CrossRef
Google scholar
|
[28] |
Shearer C J, Hisatomi T, Domen K.
CrossRef
Google scholar
|
[29] |
Suguro T, Kishimoto F, Kariya N.
CrossRef
Google scholar
|
[30] |
Spurgeon J M, Lewis N S. Proton exchange membrane electrolysis sustained by water vapor. Energy & Environmental Science, 2011, 4(8): 2993
CrossRef
Google scholar
|
[31] |
Li Z, Tian B, Zhen W.
CrossRef
Google scholar
|
[32] |
Dionigi F, Vesborg P C K, Pedersen T.
CrossRef
Google scholar
|
[33] |
Guo S, Li X, Li J.
CrossRef
Google scholar
|
[34] |
Cheng P, Quan X, Gong S.
CrossRef
Google scholar
|
[35] |
Zhang H L, Baeyens J, Degrève J.
CrossRef
Google scholar
|
[36] |
Zhao L, Bhatia B, Zhang L.
CrossRef
Google scholar
|
[37] |
Neumann O, Urban A, Day J.
CrossRef
Google scholar
|
[38] |
Zavoico A B. Solar Power Tower Design Basis Document, Revision 0. Sandia National Laboratory Technical Report SAND2001-2100. 2001
|
[39] |
Abbas R, Montes M J, Piera M.
CrossRef
Google scholar
|
[40] |
Ni G, Li G, Boriskina S V.
CrossRef
Google scholar
|
[41] |
Ito Y, Tanabe Y, Han J.
CrossRef
Google scholar
|
[42] |
H . Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization. Nature Communications, 2014, 5: 449
|
[43] |
Fang J, Liu J, Gu J.
CrossRef
Google scholar
|
[44] |
Raza A, Lu J, Alzaim S.
CrossRef
Google scholar
|
[45] |
Li X, Li J, Lu J.
CrossRef
Google scholar
|
[46] |
Jia C, Li Y, Yang Z.
CrossRef
Google scholar
|
[47] |
He S, Chen C, Kuang Y.
CrossRef
Google scholar
|
[48] |
Li W, Li F, Zhang D.
CrossRef
Google scholar
|
[49] |
Liang J, Ji X, Han J.
CrossRef
Google scholar
|
[50] |
Neumann O, Feronti C, Neumann A D.
CrossRef
Google scholar
|
[51] |
Li J, Du M, Lv G.
CrossRef
Google scholar
|
[52] |
Alhosani M H, Li H, Alketbi A S.
CrossRef
Google scholar
|
[53] |
Vaartstra G, Zhang L, Lu Z.
CrossRef
Google scholar
|
[54] |
Abdelsalam M A. Bio-inspired solar thermal brine treatment with direct vapor generation. Thesis for the Master’s Degree. Abu Dhabi: Khalifa University, 2023
|
[55] |
Xu K, Wang C, Li Z.
CrossRef
Google scholar
|
[56] |
Xia Y, Kang Y, Wang Z.
CrossRef
Google scholar
|
[57] |
Zhang L, Li X, Zhong Y.
CrossRef
Google scholar
|
[58] |
Ni G, Zandavi S H, Javid S M.
CrossRef
Google scholar
|
[59] |
Shalaby S M, Sharshir S W, Kabeel A E.
CrossRef
Google scholar
|
[60] |
Gebreslase G A. Review on membranes for the filtration of aqueous based solution: Oil in water emulsion. Journal of Membrane Science & Technology, 2018, 8(2): 1000188
CrossRef
Google scholar
|
[61] |
Deshmukh A, Boo C, Karanikola V.
CrossRef
Google scholar
|
[62] |
Wang Y, Lee J, Werber J R.
CrossRef
Google scholar
|
[63] |
Yang Y, Zhao H, Yin Z.
CrossRef
Google scholar
|
[64] |
Xu W, Hu X, Zhuang S.
CrossRef
Google scholar
|
[65] |
Hu R, Zhang J, Kuang Y.
CrossRef
Google scholar
|
[66] |
Gao S, Dong X, Huang J.
CrossRef
Google scholar
|
[67] |
Liu G, Chen T, Xu J.
CrossRef
Google scholar
|
[68] |
Cooper T A, Zandavi S H, Ni G W.
CrossRef
Google scholar
|
[69] |
Menon A K, Haechler I, Kaur S.
CrossRef
Google scholar
|
[70] |
Domen K, Naito S, Soma M.
CrossRef
Google scholar
|
[71] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef
Google scholar
|
[72] |
Chen X, Shen S, Guo L.
CrossRef
Google scholar
|
[73] |
WahabA K, Idriss H. Study of the photocatalytic reforming and oxidation of Glycerol over Ag–Pd/TiO2. International Journal of Hydrogen Energy, 2024, 52(Part B), 159−171.DOI: 10.1016/j.ijhydene.2023.05.344
|
[74] |
Wahab A K, Nadeem M A, Idriss H. Hydrogen production during ethylene glycol photoreactions over Ag-Pd/TiO2 at different partial pressures of oxygen. Frontiers in Chemistry, 2019, 7: 476835
CrossRef
Google scholar
|
[75] |
Zhang W, Banerjee-Ghosh K, Tassinari F.
CrossRef
Google scholar
|
[76] |
Leduc J, Goenuellue Y, Ghamgosar P.
CrossRef
Google scholar
|
[77] |
Amano F, Ishinaga E, Yamakata A. Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. Journal of Physical Chemistry C, 2013, 117(44): 22584–22590
CrossRef
Google scholar
|
[78] |
Wang F, DiValentin C, Pacchioni G. Rational band gap engineering of WO3 photocatalyst for visible light water splitting. ChemCatChem, 2012, 4(4): 476–478
CrossRef
Google scholar
|
[79] |
Hamid S B A, Teh S J, Lai C W. Photocatalytic water oxidation on ZnO: A review. Catalysts, 2017, 7(3): 93
CrossRef
Google scholar
|
[80] |
Ni M, Leung M K H, Leung D Y C.
CrossRef
Google scholar
|
[81] |
Hong Y, Fang Z, Yin B.
CrossRef
Google scholar
|
[82] |
Marschall R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17): 2421–2440
CrossRef
Google scholar
|
[83] |
Qian R, Zong H, Schneider J.
CrossRef
Google scholar
|
[84] |
Fu C F, Wu X, Yang J. Material design for photocatalytic water splitting from a theoretical perspective. Advanced Materials, 2018, 30(48): 1802106
CrossRef
Google scholar
|
[85] |
Dingenen F, Verbruggen S W. Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renewable and Sustainable Energy Reviews, 2021, 142: 110866
CrossRef
Google scholar
|
[86] |
Zhu C C, Jiang T, Yang H C.
CrossRef
Google scholar
|
[87] |
Daeneke T, Dahr N, Atkin P.
CrossRef
Google scholar
|
[88] |
Chowdhury F A, Trudeau M L, Guo H.
CrossRef
Google scholar
|
[89] |
Wang Q, Hisatomi T, Jia Q.
CrossRef
Google scholar
|
[90] |
Maeda K, Teramura K, Lu D.
CrossRef
Google scholar
|
[91] |
Ng K H, Lai S Y, Cheng C K.
CrossRef
Google scholar
|
[92] |
Nishiyama H, Yamada T, Nakabayashi M.
CrossRef
Google scholar
|
[93] |
Jin Z, Yan X, Hao X. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2020, 569: 34–49
CrossRef
Google scholar
|
[94] |
Bhattacharya R N, Lee C Y, Pollak F H.
CrossRef
Google scholar
|
[95] |
Tang M L, Grauer D C, Lassalle-Kaiser B.
CrossRef
Google scholar
|
[96] |
Zhang S, Zhao H, Li X.
CrossRef
Google scholar
|
[97] |
Shin S, Jin Z, Kwon D H.
CrossRef
Google scholar
|
[98] |
Benck J D, Chen Z, Kuritzky L Y.
CrossRef
Google scholar
|
[99] |
Bourgeteau T, Tondelier D, Geffroy B.
CrossRef
Google scholar
|
[100] |
Zhou P, Navid I A, Ma Y.
CrossRef
Google scholar
|
[101] |
Schrauzer G N, Guth T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193
CrossRef
Google scholar
|
[102] |
Domen K, Naito S, Onishi T.
|
[103] |
Lee W H, Lee C W, Cha G D.
CrossRef
Google scholar
|
[104] |
Han H, Huang K, Yao Y.
CrossRef
Google scholar
|
[105] |
Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
CrossRef
Google scholar
|
[106] |
Sansom C, Patchigolla K, Jonnalagadda K.
CrossRef
Google scholar
|
[107] |
Chen S, Zhao P, Xie G.
CrossRef
Google scholar
|
[108] |
NEOM
|
[109] |
Zheng Y, Ma M, Shao H. Recent advances in efficient and scalable solar hydrogen production through water splitting. Carbon Neutrality, 2023, 2(1): 23
CrossRef
Google scholar
|
[110] |
Schreck M, Niederberger M. Photocatalytic gas phase reactions. Chemistry of Materials, 2019, 31(3): 597–618
CrossRef
Google scholar
|
[111] |
Jenny S, Matsuoka M, Takeuchi M.
CrossRef
Google scholar
|
[112] |
Patial S, Hasija V, Raizada P.
CrossRef
Google scholar
|
[113] |
Acar C, Dincer I, Naterer G F. Review of photocatalytic water-splitting methods for sustainable hydrogen production. International Journal of Energy Research, 2016, 40(11): 1449–1473
CrossRef
Google scholar
|
[114] |
Mikaeili F, Gilmore T, Gouma P I. Photochemical water splitting via transition metal oxides. Catalysts, 2022, 12(11): 1303
CrossRef
Google scholar
|
[115] |
Yang M Q, Gao M, Hong M.
CrossRef
Google scholar
|
[116] |
Zhu L, Gao M, Peh C K N.
CrossRef
Google scholar
|
[117] |
Tu Y, Zhou J, Lin S, et al. Photomolecular effect leading to water evaporation exceeding thermal limit. 2022, arXiv: 2201. 10385 2022
|
[118] |
Tu Y, Chen G. Photomolecular effect: Visible light absorption at water-vapor interface. 2022, arXiv:2202.10646
|
/
〈 | 〉 |