Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2
Juntian NIU, Cunxin ZHANG, Haiyu LIU, Yan JIN, Riguang ZHANG
Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2
The effect of oxygen vacancies on the adsorption and activation of CO2 on the surface of different phases of ZrO2 is investigated by density functional theory (DFT) calculations. The calculations show that the oxygen vacancies contribute greatly to both the adsorption and activation of CO2. The adsorption energy of CO2 on the c-ZrO2, t-ZrO2 and, m-ZrO2 surfaces is enhanced to 5, 4, and 3 folds with the help of oxygen vacancies, respectively. Moreover, the energy barrier of CO2 dissociation on the defective surfaces of c-ZrO2, t-ZrO2, and m-ZrO2 is reduced to 1/2, 1/4, and 1/5 of the perfect surface with the assistance of oxygen vacancies. Furthermore, the activation of CO2 on the ZrO2 surface where oxygen vacancies are present, and changes from an endothermic reaction to an exothermic reaction. This finding demonstrates that the presence of oxygen vacancies promotes the activation of CO2 both kinetically and thermodynamically. These results could provide guidance for the high-efficient utilization of CO2 at an atomic scale.
CO2 activation / oxygen vacancies / ZrO2 / different phases
[1] |
Tollefson J. World looks ahead post-Copenhagen. Nature, 2009, 462(7276): 966–967
CrossRef
Google scholar
|
[2] |
Tollefson J. Copenhagen: The scientists’ view. Nature, 2009, 462(7274): 714–715
CrossRef
Google scholar
|
[3] |
Wang W, Wang S, Ma X.
CrossRef
Google scholar
|
[4] |
Valluri S, Claremboux V, Kawatra S. Opportunities and challenges in CO2 utilization. Journal of Environmental Sciences (China), 2022, 113(3): 322–344
CrossRef
Google scholar
|
[5] |
Wang X, Pan C, Romero C E.
CrossRef
Google scholar
|
[6] |
Wang H, He J. China’s pre-2020 CO2 emission reduction potential and its influence. Frontiers in Energy, 2019, 13(3): 571–578
CrossRef
Google scholar
|
[7] |
Honda M, Tamura M, Nakagawa Y.
CrossRef
Google scholar
|
[8] |
Díez-Ramírez J, Díaz J A, Sánchez P.
CrossRef
Google scholar
|
[9] |
Frei M S, Mondelli C, Cesarini A.
CrossRef
Google scholar
|
[10] |
Temvuttirojn C, Poo-arporn Y, Chanlek N.
CrossRef
Google scholar
|
[11] |
Numpilai T, Kidkhunthod P, Cheng C K.
CrossRef
Google scholar
|
[12] |
Witoon T, Chalorngtham J, Dumrongbunditkul P.
CrossRef
Google scholar
|
[13] |
Witoon T, Numpilai T, Nijpanich S.
CrossRef
Google scholar
|
[14] |
Witoon T, Lapkeatseree V, Numpilai T.
CrossRef
Google scholar
|
[15] |
Stroud T, Smith T J, Le Saché E.
CrossRef
Google scholar
|
[16] |
Rubin E S, Cooper R N, Frosch R A.
CrossRef
Google scholar
|
[17] |
AndersonR B. Fischer-Tropsch Synthesis. New York: Academic Press, 1984
|
[18] |
Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Applied Catalysis A: General, 1999, 186(1−2): 3–12
CrossRef
Google scholar
|
[19] |
Zhang C, Li Y, He Z.
CrossRef
Google scholar
|
[20] |
Van de LoosdrechtJBotesF GCiobicaI M,
|
[21] |
Chen Y, Wei J, Duyar M S.
CrossRef
Google scholar
|
[22] |
Ashrafi M, Pröll T, Pfeifer C.
CrossRef
Google scholar
|
[23] |
Xu Y, Lausche A C, Wang S.
CrossRef
Google scholar
|
[24] |
Fattahi A, McCarthy R E, Ahmad M R.
CrossRef
Google scholar
|
[25] |
Lv J, Wang D, Wei B.
CrossRef
Google scholar
|
[26] |
Fakeeha A H, Kurdi A, Al-Baqmaa Y A.
CrossRef
Google scholar
|
[27] |
Lu Y, Guo D, Zhao Y.
CrossRef
Google scholar
|
[28] |
Qin Z, Chen L, Chen J.
|
[29] |
Gao X, Lin Z, Li T.
CrossRef
Google scholar
|
[30] |
Zhang L, Meng Y, Yang J.
CrossRef
Google scholar
|
[31] |
Qiu H, Ran J, Niu J.
CrossRef
Google scholar
|
[32] |
Ou Z, Ran J, Qiu H.
CrossRef
Google scholar
|
[33] |
Hao S, Zhang H. High catalytic performance of nitrate reduction by synergistic effect of zero-valent iron (FeO) and bimetallic composite carrier catalyst. Journal of Cleaner Production, 2017, 167: 192–200
CrossRef
Google scholar
|
[34] |
Yang W, Zhao H, Wang K.
CrossRef
Google scholar
|
[35] |
Nagappagari L R, Samanta S, Sharma N.
CrossRef
Google scholar
|
[36] |
Chen H Y T, Tosoni S, Pacchioni G. A DFT study of the acid–base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules. Surface Science, 2016, 652: 163–171
CrossRef
Google scholar
|
[37] |
Liang Z, Wang W, Zhang M.
CrossRef
Google scholar
|
[38] |
Murota T, Hasegawa T, Aozasa S.
CrossRef
Google scholar
|
[39] |
Chen C, Ruan C, Zhan Y.
CrossRef
Google scholar
|
[40] |
Han X, Yang J, Han B.
CrossRef
Google scholar
|
[41] |
Petchmark M, Ruangpornvisuti V. Hydrogen adsorption on c-ZrO2(111), t-ZrO2(101), and m-ZrO2(111) surfaces and their oxygen-vacancy defect for hydrogen sensing and storage: A first-principles investigation. Materials Letters, 2021, 301: 130243
CrossRef
Google scholar
|
[42] |
AliouiOBadawi MErtoA,
|
[43] |
Zhu Z, Tao H, Zhou Y. Using density functional theory to unravel the size-dependent effect of Au nanoparticles and au single atoms adsorbed on carbon nitride for the hydrogenation of nitrobenzene. ACS Applied Nano Materials, 2022, 5(12): 18753–18760
CrossRef
Google scholar
|
[44] |
NiuJChenS ZhengX,
|
[45] |
Fakeeha A H, Kurdi A, Al-Baqmaa Y A.
CrossRef
Google scholar
|
[46] |
Hu X, Jia X, Zhang X.
CrossRef
Google scholar
|
[47] |
Niu J, Liu H, Jin Y.
CrossRef
Google scholar
|
[48] |
Niu J, Liu H, Jin Y.
CrossRef
Google scholar
|
[49] |
Han L, Jing F, Zhang J.
CrossRef
Google scholar
|
[50] |
Chen J, Abazari R, Adegoke K A.
CrossRef
Google scholar
|
[51] |
Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508–517
CrossRef
Google scholar
|
[52] |
Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
CrossRef
Google scholar
|
[53] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef
Google scholar
|
[54] |
Gerald K. X-Ray diffraction powder pattern of metastable cubic ZrO2. Journal of the American Ceramic Society, 1971, 54(10): 531–531
CrossRef
Google scholar
|
[55] |
Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society, 1984, 67(6): 119–121
CrossRef
Google scholar
|
[56] |
Christensen A, Carter E A. First-principles study of the surfaces of zirconia. Physical Review B: Condensed Matter, 1998, 58(12): 8050–8064
CrossRef
Google scholar
|
[57] |
Arce-Ramos J M, Grabow L C, Handy B E.
CrossRef
Google scholar
|
[58] |
Taoudi A, Laval J P, Frit B. Synthesis and crystal structure of three new rare earth oxyfluorides related to baddeleyite [LnOF; Ln= Tm, Yb, Lu]. Materials Research Bulletin, 1994, 29(11): 1137–1147
CrossRef
Google scholar
|
[59] |
Steib M, Lou Y, Jentys A.
CrossRef
Google scholar
|
/
〈 | 〉 |