
Polymeric nanocomposites for electrocaloric refrigeration
Yu CAI, Qiang LI, Feihong DU, Jiawang FENG, Donglin HAN, Shanyu ZHENG, Shihao YANG, Yingjing ZHANG, Binbin YU, Junye SHI, Xiaoshi QIAN
Front. Energy ›› 2023, Vol. 17 ›› Issue (4) : 450-462.
Polymeric nanocomposites for electrocaloric refrigeration
Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential, highly efficient refrigeration, and heat pumps. To date, both polymeric and inorganic oxides have demonstrated giant electrocaloric effect as well as respective cooling devices. Although both polymeric and inorganic oxides have been identified as promising cooling methods that are distinguishable from the traditional ones, they still pose many challenges to more practical applications. From an electrocaloric material point of view, electrocaloric nanocomposites may provide a solution to combine the beneficial effects of both organic and inorganic electrocaloric materials. This article reviews the recent advancements in polymer-based electrocaloric composites and the state-of-the-art cooling devices operating these nanocomposites. From a device point of view, it discusses the existing challenges and potential opportunities of electrocaloric nanocomposites.
nanocomposites / electrocaloric / refrigeration / polymer
[1] |
Ma R, Zhang Z, Tong K.
CrossRef
Google scholar
|
[2] |
Shi J, Han D, Li Z.
CrossRef
Google scholar
|
[3] |
Qian X, Han D, Zheng L.
CrossRef
Google scholar
|
[4] |
Gu H, Qian X, Li X.
CrossRef
Google scholar
|
[5] |
Neese B, Chu B, Lu S G.
CrossRef
Google scholar
|
[6] |
CuiHHeW PeiQ,
|
[7] |
Qian X, Wu S, Furman E.
CrossRef
Google scholar
|
[8] |
Liu Y, Zhang B, Xu W.
CrossRef
Google scholar
|
[9] |
Lu S G, Rožič B, Zhang Q M.
CrossRef
Google scholar
|
[10] |
Qiu J H, Ding J N, Yuan N Y.
CrossRef
Google scholar
|
[11] |
Li X, Qian X, Gu H.
CrossRef
Google scholar
|
[12] |
Chen X, Li X, Qian X.
CrossRef
Google scholar
|
[13] |
Moreira R L. Electrocaloric effect in γ-irradiated P(VDF-TrFE) copolymers with relaxor features. Ferroelectrics, 2013, 446(1): 1–8
CrossRef
Google scholar
|
[14] |
Qian X, Ye H, Yang T.
CrossRef
Google scholar
|
[15] |
Qian X, Yang T, Zhang T.
CrossRef
Google scholar
|
[16] |
Prest W M Jr, Luca D J. The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. Journal of Applied Physics, 1978, 49(10): 5042–5047
CrossRef
Google scholar
|
[17] |
Huang C, Klein R, Feng X.
CrossRef
Google scholar
|
[18] |
Saranya D, Chaudhuri A R, Parui J.
CrossRef
Google scholar
|
[19] |
Bai Y, Zheng G P, Ding K.
CrossRef
Google scholar
|
[20] |
Peng B, Fan H, Zhang Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Advanced Functional Materials, 2013, 23(23): 2987–2992
CrossRef
Google scholar
|
[21] |
Ye H, Qian X, Jeong D.
CrossRef
Google scholar
|
[22] |
Ye H J, Qian X S, Lu J.
CrossRef
Google scholar
|
[23] |
Hou Y, Yang L, Qian X.
CrossRef
Google scholar
|
[24] |
Hou Y, Yang L, Qian X.
CrossRef
Google scholar
|
[25] |
Qian J, Guo M, Jiang J.
CrossRef
Google scholar
|
[26] |
Qian J, Jiang J, Shen Y. Enhanced electrocaloric strength in P(VDF-TrFE-CFE) by decreasing the crystalline size. Journal of Materiomics, 2019, 5(3): 357–362
CrossRef
Google scholar
|
[27] |
Li X, Qian X, Lu S G.
CrossRef
Google scholar
|
[28] |
Li Q, Zhang G, Zhang X.
CrossRef
Google scholar
|
[29] |
Zhang G, Li Q, Gu H.
CrossRef
Google scholar
|
[30] |
Zhang G, Fan B, Zhao P.
CrossRef
Google scholar
|
[31] |
Zhang G, Zhang X, Yang T.
CrossRef
Google scholar
|
[32] |
Zhang G, Weng L, Hu Z.
CrossRef
Google scholar
|
[33] |
Jiang Z Y, Zheng X C, Zheng G P. The enhanced electrocaloric effect in P(VDF-TrFE) copolymer with barium strontium titanate nano-fillers synthesized via an effective hydrothermal method. RSC Advances, 2015, 5(76): 61946–61954
CrossRef
Google scholar
|
[34] |
Yang L, Qian X, Koo C.
CrossRef
Google scholar
|
[35] |
Qian J, Peng R, Shen Z.
|
[36] |
Lu Y, Yu J, Huang J.
CrossRef
Google scholar
|
[37] |
Chen Y, Qian J, Yu J.
CrossRef
Google scholar
|
[38] |
Zhang G, Zhang X, Huang H.
CrossRef
Google scholar
|
[39] |
Chen X, Qian X, Li X.
CrossRef
Google scholar
|
[40] |
Le Goupil F, Coin F, Pouriamanesh N.
CrossRef
Google scholar
|
[41] |
Ullah A, ur Rahman A, Won Ahn C.
CrossRef
Google scholar
|
[42] |
AziguliHLiu YZhangG,
|
[43] |
Zhang X, Shen Y, Shen Z.
CrossRef
Google scholar
|
[44] |
Lu S, Zhang Q. Large electrocaloric effect in relaxor ferroelectrics. Journal of Advanced Dielectrics, 2012, 2(3): 1230011
CrossRef
Google scholar
|
[45] |
Chen X, Li X, Qian X.
CrossRef
Google scholar
|
[46] |
Chen J, Xiong X, Zhang Q.
CrossRef
Google scholar
|
[47] |
Jung H, Kim J, Lim J.
CrossRef
Google scholar
|
[48] |
Shaobo L, Yanqiu L. Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler. Materials Science and Engineering B, 2004, 113(1): 46–49
CrossRef
Google scholar
|
[49] |
Kaddoussi H, Gagou Y, Lahmar A.
CrossRef
Google scholar
|
[50] |
Chen X, Qian X, Li X.
CrossRef
Google scholar
|
[51] |
TokkanMDemir M MAdemU. Enhanced electrocaloric effect of P(VDF-TrFE)-based nanocomposites with Ca and Sn co-doped BaTiO3 particles. Materials Science, 2022, doi: 10.2139/ssrn.4091479
|
[52] |
De Cicco G, Morten B, Dalmonego D.
CrossRef
Google scholar
|
[53] |
Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 2012, 57(6): 980–1009
CrossRef
Google scholar
|
[54] |
Qian X, Ye H, Zhang Y.
CrossRef
Google scholar
|
[55] |
Axelsson A, Le Goupil F, Valant M.
CrossRef
Google scholar
|
[56] |
Kang X, Jia S, Peng J.
CrossRef
Google scholar
|
[57] |
Wang H, Meng Y, Zhang Z.
CrossRef
Google scholar
|
[58] |
Dang Z, Yuan J, Zha J.
CrossRef
Google scholar
|
[59] |
Wang J, Wu C, Liu R.
CrossRef
Google scholar
|
[60] |
Tu S, Jiang Q, Zhang X.
CrossRef
Google scholar
|
[61] |
Tu S, Jiang Q, Zhang J.
CrossRef
Google scholar
|
[62] |
Jana S, Garain S, Sen S.
CrossRef
Google scholar
|
[63] |
Wu X, Kang D, Liu N.
CrossRef
Google scholar
|
[64] |
Li J, Seok S I, Chu B.
CrossRef
Google scholar
|
[65] |
Shen Z H, Wang J J, Lin Y.
CrossRef
Google scholar
|
[66] |
Dang Z M, Wang L, Yin Y.
CrossRef
Google scholar
|
[67] |
Nan C. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993, 37(1): 66–68
CrossRef
Google scholar
|
[68] |
Dan Z, Jiang J, Zhang X.
CrossRef
Google scholar
|
[69] |
Zhang Y, Zhang C, Feng Y.
CrossRef
Google scholar
|
[70] |
Morozovska A N, Eliseev E A, Glinchuk M D.
CrossRef
Google scholar
|
[71] |
Prateek V K, Thakur R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews, 2016, 116(7): 4260–4317
CrossRef
Google scholar
|
[72] |
Tanaka T, Montanari G C, Mulhaupt R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763–784
CrossRef
Google scholar
|
[73] |
Tanaka T. Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914–928
CrossRef
Google scholar
|
[74] |
Lewis T J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739–753
CrossRef
Google scholar
|
[75] |
Gu H, Craven B, Qian X.
CrossRef
Google scholar
|
[76] |
Crossley S, McGinnigle J R, Kar-Narayan S.
CrossRef
Google scholar
|
[77] |
Mark J E. Physical Properties of Polymers Handbook. New York: Springer, 2007,
|
[78] |
Plawsky J L. Transport Phenomena Fundamentals. 4th ed. CRC Press, 2009,
|
[79] |
Zeller R C, Pohl R O. Thermal conductivity and specific heat of noncrystalline solids. Physical Review. B, Solid State, 1971, 4(6): 2029–2041
CrossRef
Google scholar
|
[80] |
Li M D, Shen X Q, Chen X.
CrossRef
Google scholar
|
[81] |
Nair B, Usui T, Crossley S.
CrossRef
Google scholar
|
[82] |
Nouchokgwe Y, Lheritier P, Usui T.
CrossRef
Google scholar
|
[83] |
Guo D, Gao J, Yu Y J.
CrossRef
Google scholar
|
[84] |
Meng Y, Zhang Z, Wu H.
CrossRef
Google scholar
|
[85] |
Bo Y, Zhang Q, Cui H.
CrossRef
Google scholar
|
[86] |
Cui H, Zhang Q, Bo Y.
CrossRef
Google scholar
|
[87] |
Qian J, Peng R, Shen Z.
CrossRef
Google scholar
|
[88] |
Thakur Y, Zhang T, Iacob C.
CrossRef
Google scholar
|
[89] |
Zhang T, Chen X, Zhang Q.
CrossRef
Google scholar
|
[90] |
Zhang B, Chen X, Lu W.
CrossRef
Google scholar
|
/
〈 |
|
〉 |