Design and analysis of electrothermal metasurfaces

Xiu LIU , Zhuo LI , Zexiao WANG , Hyeong Seok YUN , Sheng SHEN

Front. Energy ›› 2023, Vol. 17 ›› Issue (1) : 134 -140.

PDF (684KB)
Front. Energy ›› 2023, Vol. 17 ›› Issue (1) : 134 -140. DOI: 10.1007/s11708-022-0841-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Design and analysis of electrothermal metasurfaces

Author information +
History +
PDF (684KB)

Abstract

Electrothermal metasurfaces have garnered considerable attention owing to their ability to dynamically control thermal infrared radiation. Although previous studies were mainly focused on metasurfaces with infinite unit cells, in practice, the finite-size effect can be a critical design factor for developing thermal metasurfaces with fast response and broad temperature uniformity. Here, we study the thermal metasurfaces consisting of gold nanorods with a finite array size, which can achieve a resonance close to that of the infinite case with only several periods. More importantly, such a small footprint due to the finite array size yields response time down to a nanosecond level. Furthermore, the number of the unit cells in the direction perpendicular to the axis of nanorods is found to be insensitive to the resonance and response time; thus, providing a tunable aspect ratio that can boost the temperature uniformity in the sub-Kelvin level.

Graphical abstract

Keywords

modulated thermal infrared radiation / metasurface / nanosecond response time / sub-Kelvin temperature uniformity / finite size / aspect ratio

Cite this article

Download citation ▾
Xiu LIU, Zhuo LI, Zexiao WANG, Hyeong Seok YUN, Sheng SHEN. Design and analysis of electrothermal metasurfaces. Front. Energy, 2023, 17(1): 134-140 DOI:10.1007/s11708-022-0841-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu B, Gong W, Yu B. . Perfect thermal emission by nanoscale transmission line resonators. Nano Letters, 2017, 17(2): 666–672

[2]

Li J, Li Z, Shen S. Degenerate quasi-normal mode theory for near-field radiation between plasmonic structures. Optics Express, 2020, 28(23): 34123–34136

[3]

Li J, Li Z, Liu X. . Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces. Physical Review B, 2022, 106: 115416

[4]

Lu F, Liu B, Shen S. Infrared wavefront control based on graphene metasurfaces. Advanced Optical Materials, 2014, 2(8): 794–799

[5]

Li J, Liu B, Shen S. Graphene surface plasmons mediated thermal radiation. Journal of Optics, 2018, 20(2): 024011

[6]

Greffet J J, Carminati R, Joulain K. . Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61–64

[7]

BaranovD GXiaoYNechepurenkoI A, . Nanophotonic engineering of far-field thermal emitters. 2018: arXiv: 1806.03372

[8]

Li W, Fan S. Nanophotonic control of thermal radiation for energy applications. Optics Express, 2018, 26(12): 15995

[9]

Ren Z, Chang Y, Ma Y. . Leveraging of MEMS technologies for optical metamaterials applications. Advanced Optical Materials, 2020, 8(3): 1900653

[10]

Li Y, Li W, Han T. . Transforming heat transfer with thermal metamaterials and devices. Nature Reviews. Materials, 2021, 6(6): 488–507

[11]

Lin Y, Xu Z. Reconfigurable metamaterials for optoelectronic applications. International Journal of Optomechatronics, 2020, 14(1): 78–93

[12]

Miller D A B, Zhu L, Fan S. Universal modal radiation laws for all thermal emitters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): 4336–4341

[13]

Inoue T, Zoysa M D, Asano T. . Realization of dynamic thermal emission control. Nature Materials, 2014, 13(10): 928–931

[14]

Brar V W, Sherrott M C, Jang M S. . Electronic modulation of infrared radiation in graphene plasmonic resonators. Nature Communications, 2015, 6(1): 7032

[15]

Park J H, Han S, Nagpal P. . Observation of thermal beaming from tungsten and molybdenum bull’s eyes. ACS Photonics, 2016, 3(3): 494–500

[16]

Lochbaum A, Fedoryshyn Y, Dorodnyy A. . On-chip narrowband thermal emitter for mid-IR optical gas sensing. ACS Photonics, 2017, 4(6): 1371–1380

[17]

Tittl A, Michel A K U, Schäferling M. . A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials, 2015, 27(31): 4597–4603

[18]

Lenert A, Bierman D M, Nam Y. . A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 2014, 9(2): 126–130

[19]

Bierman D M, Lenert A, Chan W R. . Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy, 2016, 1(6): 16068

[20]

Liu X, Padilla W J. Dynamic manipulation of infrared radiation with MEMS metamaterials. Advanced Optical Materials, 2013, 1(8): 559–562

[21]

Miyazaki H T, Kasaya T, Oosato H. . Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Science and Technology of Advanced Materials, 2015, 16(3): 035005

[22]

Park J, Kang J H, Liu X. . Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Science Advances, 2018, 4(12): eaat3163

[23]

Zhang Y, Fowler C, Liang J. . Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16(6): 661–666

[24]

Wang Y, Landreman P, Schoen D. . Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology, 2021, 16(6): 667–672

[25]

Abdollahramezani S, Hemmatyar O, Taghinejad M. . Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature Communications, 2022, 13(1): 1696

[26]

Li J, Wuenschell J, Li Z. . Fiber coupled near-field thermoplasmonic emission from gold nanorods at 1100 K. Small. Small, 2021, 17(17): e2007274

[27]

Li J, Yu B, Shen S. Scale law of far-field thermal radiation from plasmonic metasurfaces. Physical Review Letters, 2020, 124(13): 137401

[28]

Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185–200

[29]

Li Z, Li J, Liu X. . Wiener chaos expansion method for thermal radiation from inhomogeneous structures. Physical Review. B, 2021, 104(19): 195426

[30]

Grant J, Ma Y, Saha S. . Polarization insensitive, broadband terahertz metamaterial absorber. Optics Letters, 2011, 36(17): 3476–3478

[31]

Hasan D, Pitchappa P, Wang J. . Novel CMOS-compatible Mo–AlN–Mo platform for metamaterial-based mid-IR absorber. ACS Photonics, 2017, 4(2): 302–315

[32]

Lochbaum A, Dorodnyy A, Koch U. . Compact mid-infrared gas sensing enabled by an all-metamaterial design. Nano Letters, 2020, 20(6): 4169–4176

[33]

Li D, Zhou H, Hui X. . Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(20): 2101879

[34]

Wojszvzyk L, Nguyen A, Coutrot A L. . An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. Nature Communications, 2021, 12(1): 1492

[35]

Mohammadi Estakhri N, Argyropoulos C, Alù A. Graded metascreens to enable a new degree of nanoscale light management. Philosophical Transactions—Royal Society. Mathematical, Physical, and Engineering Sciences, 2015, 373(2049): 20140351

[36]

Tsitsas N L, Valagiannopoulos C A. Anomalous reflection of visible light by all-dielectric gradient metasurfaces. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(7): D1

[37]

Liu X, Padilla W J. Reconfigurable room temperature metamaterial infrared emitter. Optica, 2017, 4(4): 430–433

[38]

Kang D D, Inoue T, Asano T. . Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photonics, 2019, 6(6): 1565–1571

[39]

Yao Y, Kats M A, Genevet P. . Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Letters, 2013, 13(3): 1257–1264

[40]

Yao Y, Shankar R, Kats M A. . Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 2014, 14(11): 6526–6532

[41]

Fan K, Suen J, Wu X. . Graphene metamaterial modulator for free-space thermal radiation. Optics Express, 2016, 24(22): 25189–25201

[42]

Zeng B, Huang Z, Singh A. . Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light, Science & Applications, 2018, 7(1): 51

[43]

Shiue R J, Gao Y, Tan C. . Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nature Communications, 2019, 10(1): 109

[44]

Mahlmeister N H, Lawton L M, Luxmoore I J. . Modulation characteristics of graphene-based thermal emitters. Applied Physics Express, 2016, 9(1): 012105

[45]

Shi C, Mahlmeister N H, Luxmoore I J. . Metamaterial-based graphene thermal emitter. Nano Research, 2018, 11(7): 3567–3573

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (684KB)

3027

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/