Design and analysis of electrothermal metasurfaces
Xiu LIU, Zhuo LI, Zexiao WANG, Hyeong Seok YUN, Sheng SHEN
Design and analysis of electrothermal metasurfaces
Electrothermal metasurfaces have garnered considerable attention owing to their ability to dynamically control thermal infrared radiation. Although previous studies were mainly focused on metasurfaces with infinite unit cells, in practice, the finite-size effect can be a critical design factor for developing thermal metasurfaces with fast response and broad temperature uniformity. Here, we study the thermal metasurfaces consisting of gold nanorods with a finite array size, which can achieve a resonance close to that of the infinite case with only several periods. More importantly, such a small footprint due to the finite array size yields response time down to a nanosecond level. Furthermore, the number of the unit cells in the direction perpendicular to the axis of nanorods is found to be insensitive to the resonance and response time; thus, providing a tunable aspect ratio that can boost the temperature uniformity in the sub-Kelvin level.
modulated thermal infrared radiation / metasurface / nanosecond response time / sub-Kelvin temperature uniformity / finite size / aspect ratio
[1] |
Liu B, Gong W, Yu B.
CrossRef
Google scholar
|
[2] |
Li J, Li Z, Shen S. Degenerate quasi-normal mode theory for near-field radiation between plasmonic structures. Optics Express, 2020, 28(23): 34123–34136
CrossRef
Google scholar
|
[3] |
Li J, Li Z, Liu X.
|
[4] |
Lu F, Liu B, Shen S. Infrared wavefront control based on graphene metasurfaces. Advanced Optical Materials, 2014, 2(8): 794–799
CrossRef
Google scholar
|
[5] |
Li J, Liu B, Shen S. Graphene surface plasmons mediated thermal radiation. Journal of Optics, 2018, 20(2): 024011
CrossRef
Google scholar
|
[6] |
Greffet J J, Carminati R, Joulain K.
CrossRef
Google scholar
|
[7] |
BaranovD GXiaoYNechepurenkoI A,
|
[8] |
Li W, Fan S. Nanophotonic control of thermal radiation for energy applications. Optics Express, 2018, 26(12): 15995
CrossRef
Google scholar
|
[9] |
Ren Z, Chang Y, Ma Y.
CrossRef
Google scholar
|
[10] |
Li Y, Li W, Han T.
CrossRef
Google scholar
|
[11] |
Lin Y, Xu Z. Reconfigurable metamaterials for optoelectronic applications. International Journal of Optomechatronics, 2020, 14(1): 78–93
CrossRef
Google scholar
|
[12] |
Miller D A B, Zhu L, Fan S. Universal modal radiation laws for all thermal emitters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): 4336–4341
CrossRef
Google scholar
|
[13] |
Inoue T, Zoysa M D, Asano T.
CrossRef
Google scholar
|
[14] |
Brar V W, Sherrott M C, Jang M S.
CrossRef
Google scholar
|
[15] |
Park J H, Han S, Nagpal P.
CrossRef
Google scholar
|
[16] |
Lochbaum A, Fedoryshyn Y, Dorodnyy A.
CrossRef
Google scholar
|
[17] |
Tittl A, Michel A K U, Schäferling M.
CrossRef
Google scholar
|
[18] |
Lenert A, Bierman D M, Nam Y.
CrossRef
Google scholar
|
[19] |
Bierman D M, Lenert A, Chan W R.
CrossRef
Google scholar
|
[20] |
Liu X, Padilla W J. Dynamic manipulation of infrared radiation with MEMS metamaterials. Advanced Optical Materials, 2013, 1(8): 559–562
CrossRef
Google scholar
|
[21] |
Miyazaki H T, Kasaya T, Oosato H.
CrossRef
Google scholar
|
[22] |
Park J, Kang J H, Liu X.
CrossRef
Google scholar
|
[23] |
Zhang Y, Fowler C, Liang J.
CrossRef
Google scholar
|
[24] |
Wang Y, Landreman P, Schoen D.
CrossRef
Google scholar
|
[25] |
Abdollahramezani S, Hemmatyar O, Taghinejad M.
CrossRef
Google scholar
|
[26] |
Li J, Wuenschell J, Li Z.
CrossRef
Google scholar
|
[27] |
Li J, Yu B, Shen S. Scale law of far-field thermal radiation from plasmonic metasurfaces. Physical Review Letters, 2020, 124(13): 137401
CrossRef
Google scholar
|
[28] |
Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185–200
CrossRef
Google scholar
|
[29] |
Li Z, Li J, Liu X.
CrossRef
Google scholar
|
[30] |
Grant J, Ma Y, Saha S.
CrossRef
Google scholar
|
[31] |
Hasan D, Pitchappa P, Wang J.
CrossRef
Google scholar
|
[32] |
Lochbaum A, Dorodnyy A, Koch U.
CrossRef
Google scholar
|
[33] |
Li D, Zhou H, Hui X.
CrossRef
Google scholar
|
[34] |
Wojszvzyk L, Nguyen A, Coutrot A L.
CrossRef
Google scholar
|
[35] |
Mohammadi Estakhri N, Argyropoulos C, Alù A. Graded metascreens to enable a new degree of nanoscale light management. Philosophical Transactions—Royal Society. Mathematical, Physical, and Engineering Sciences, 2015, 373(2049): 20140351
CrossRef
Google scholar
|
[36] |
Tsitsas N L, Valagiannopoulos C A. Anomalous reflection of visible light by all-dielectric gradient metasurfaces. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(7): D1
CrossRef
Google scholar
|
[37] |
Liu X, Padilla W J. Reconfigurable room temperature metamaterial infrared emitter. Optica, 2017, 4(4): 430–433
CrossRef
Google scholar
|
[38] |
Kang D D, Inoue T, Asano T.
CrossRef
Google scholar
|
[39] |
Yao Y, Kats M A, Genevet P.
CrossRef
Google scholar
|
[40] |
Yao Y, Shankar R, Kats M A.
CrossRef
Google scholar
|
[41] |
Fan K, Suen J, Wu X.
CrossRef
Google scholar
|
[42] |
Zeng B, Huang Z, Singh A.
CrossRef
Google scholar
|
[43] |
Shiue R J, Gao Y, Tan C.
CrossRef
Google scholar
|
[44] |
Mahlmeister N H, Lawton L M, Luxmoore I J.
CrossRef
Google scholar
|
[45] |
Shi C, Mahlmeister N H, Luxmoore I J.
CrossRef
Google scholar
|
/
〈 | 〉 |