Promising approach for preparing metallic single-atom catalysts: electrochemical deposition

Shuiyun SHEN, Lutian ZHAO, Junliang ZHANG

PDF(1611 KB)
PDF(1611 KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (4) : 537-541. DOI: 10.1007/s11708-022-0837-5
VIEWPOINT

Promising approach for preparing metallic single-atom catalysts: electrochemical deposition

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Shuiyun SHEN, Lutian ZHAO, Junliang ZHANG. Promising approach for preparing metallic single-atom catalysts: electrochemical deposition. Front. Energy, 2022, 16(4): 537‒541 https://doi.org/10.1007/s11708-022-0837-5

References

[1]
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486( 7401): 43– 51
CrossRef Google scholar
[2]
Gao D F, Liu T F, Wang G X. . Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Letters, 2021, 6( 2): 713– 727
CrossRef Google scholar
[3]
Li L G, Wang P T, Shao Q. . Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Advanced Materials, 2021, 33( 50): 2004243
CrossRef Google scholar
[4]
Liu L C, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118( 10): 4981– 5079
CrossRef Google scholar
[5]
Han B C, Miranda C R, Ceder G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: a first-principles study. Physical Review B: Condensed Matter and Materials Physics, 2008, 77( 7): 075410
CrossRef Google scholar
[6]
Zhang Y F, Qin J, Leng D Y. . Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts. Journal of Power Sources, 2021, 485 : 229340
CrossRef Google scholar
[7]
Zhang J L, Vukmirovic M B, Xu Y. . Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 117( 14): 2170– 2173
CrossRef Google scholar
[8]
Adzic R R Marinkovic N S. Platinum monolayer electrocatalysts. In: Kreysa G, Ota Ki, Savinell R F, eds. Encyclopedia of Applied Electrochemistry. New York: Springer, 2014
[9]
DeRita L, Dai S, Lopez-Zepeda K. . Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. Journal of the American Chemical Society, 2017, 139( 40): 14150– 14165
CrossRef Google scholar
[10]
Wang D, Xin H L, Hovden R. . Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12( 1): 81– 87
CrossRef Google scholar
[11]
Sasaki K, Kuttiyiel K A, Adzic R R. Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells. Current Opinion in Electrochemistry, 2020, 21 : 368– 375
CrossRef Google scholar
[12]
Luo L X, Zhu F J, Tian R X. . Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catalysis, 2017, 7( 8): 5420– 5430
CrossRef Google scholar
[13]
Su H, Soldatov M A, Roldugin V. . Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience, 2022, 2( 1): 102– 109
CrossRef Google scholar
[14]
Zhang W, Zheng W T. Single atom excels as the smallest functional material. Advanced Functional Materials, 2016, 26( 18): 2988– 2993
CrossRef Google scholar
[15]
Tian R X, Shen S Y, Zhu F J. . Icosahedral Pt-Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity. ChemSusChem, 2018, 11( 6): 1015– 1019
CrossRef Google scholar
[16]
Yin P Q, Yao T, Wu Y E. . Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angewandte Chemie International Edition, 2016, 55( 36): 10800– 10805
CrossRef Google scholar
[17]
Chen Y J, Ji S F, Chen C. . Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2( 7): 1242– 1264
CrossRef Google scholar
[18]
Cui X J, Li W, Ryabchuk P. . Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1( 6): 385– 397
CrossRef Google scholar
[19]
Zang W J, Sun T, Yang T. . Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33( 8): 2003846
CrossRef Google scholar
[20]
Chen M, He Y, Spendelow J S. . Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Letters, 2019, 4( 7): 1619– 1633
CrossRef Google scholar
[21]
Liu J, Jiao M G, Lu L L. . High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 2017, 8( 1): 15938
CrossRef Google scholar
[22]
Yang S, Tak Y J, Kim J. . Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catalysis, 2017, 7( 2): 1301– 1307
CrossRef Google scholar
[23]
Poerwoprajitno A R, Gloag L, Watt J. . A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5( 3): 231– 237
CrossRef Google scholar
[24]
Wang X N, Zhao L M, Li X J. . Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nature Communications, 2022, 13( 1): 1596
CrossRef Google scholar
[25]
Xia Y N, Xiong Y J, Lim B. . Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angewandte Chemie International Edition, 2009, 48( 1): 60– 103
CrossRef Google scholar
[26]
Tan W, Xie S H, Cai Y D. . Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control. Environmental Science & Technology, 2021, 55( 18): 12607– 12618
CrossRef Google scholar
[27]
Zhou M, Bao S J, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. Journal of the American Chemical Society, 2019, 141( 18): 7327– 7332
CrossRef Google scholar
[28]
Peng Z M, Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 2009, 4( 2): 143– 164
CrossRef Google scholar
[29]
Hussein H E M, Maurer R J, Amari H. . Tracking metal electrodeposition dynamics from nucleation and growth of a single atom to a crystalline nanoparticle. ACS Nano, 2018, 12( 7): 7388– 7396
CrossRef Google scholar
[30]
Gupta A, Srivastava C. Nucleation and growth mechanism of tin electrodeposition on graphene oxide: a kinetic, thermodynamic and microscopic study. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2020, 861 : 113964
CrossRef Google scholar
[31]
Altimari P, Pagnanelli F. Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: model development and validation. Electrochimica Acta, 2016, 206 : 116– 126
CrossRef Google scholar
[32]
Yan Z H, Sun H M, Chen X. . Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nature Communications, 2018, 9( 1): 2373
CrossRef Google scholar
[33]
Zhang L H, Han L L, Liu H X. . Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angewandte Chemie International Edition, 2017, 56( 44): 13900
CrossRef Google scholar
[34]
Zhang Z R, Feng C, Liu C X. . Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11( 1): 1215
CrossRef Google scholar
[35]
Zhang Z R, Feng C, Wang D D. . Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13( 1): 2473
CrossRef Google scholar
[36]
Xue Y R, Huang B L, Yi Y P. . Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nature Communications, 2018, 9( 1): 1460
CrossRef Google scholar
[37]
Yu H D, Xue Y R, Huang B L. . Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production. iScience, 2019, 11 : 31– 41
CrossRef Google scholar
[38]
Shi Y, Lee C, Tan X Y. . Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small Structures, 2022, 3( 3): 2100185
CrossRef Google scholar
[39]
Kottwitz M, Li Y Y, Wang H D. . Single atom catalysts: a review of characterization methods. Chemistry Methods, 2021, 1( 6): 278– 294
CrossRef Google scholar
[40]
Fei H L, Dong J C, Feng Y X. . General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1( 1): 63– 72
CrossRef Google scholar
[41]
Di Liberto G, Cipriano L A, Pacchioni G. Universal principles for the rational design of single atom electrocatalysts? handle with care.. ACS Catalysis, 2022, 12( 10): 5846– 5856
CrossRef Google scholar
[42]
Liu J C, Xiao H, Li J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. Journal of the American Chemical Society, 2020, 142( 7): 3375– 3383
CrossRef Google scholar
[43]
Wan J W, Chen W X, Jia C Y. . Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30( 11): 1705369
CrossRef Google scholar
[44]
Wang X, Chen W X, Zhang L. . Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. Journal of the American Chemical Society, 2017, 139( 28): 9419– 9422
CrossRef Google scholar
[45]
Wei H S, Liu X Y, Wang A Q. . FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5( 1): 5634
CrossRef Google scholar
[46]
Zhang B W, Ren L, Xu Z F. . Atomic structural evolution of single-layer Pt clusters as efficient electrocatalysts. Small, 2021, 17( 26): 2100732
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press 2022
AI Summary AI Mindmap
PDF(1611 KB)

Accesses

Citations

Detail

Sections
Recommended

/