Promising approach for preparing metallic single-atom catalysts: electrochemical deposition

Shuiyun SHEN , Lutian ZHAO , Junliang ZHANG

Front. Energy ›› 2022, Vol. 16 ›› Issue (4) : 537 -541.

PDF (1611KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (4) : 537 -541. DOI: 10.1007/s11708-022-0837-5
VIEWPOINT
VIEWPOINT

Promising approach for preparing metallic single-atom catalysts: electrochemical deposition

Author information +
History +
PDF (1611KB)

Graphical abstract

Cite this article

Download citation ▾
Shuiyun SHEN, Lutian ZHAO, Junliang ZHANG. Promising approach for preparing metallic single-atom catalysts: electrochemical deposition. Front. Energy, 2022, 16(4): 537-541 DOI:10.1007/s11708-022-0837-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486( 7401): 43– 51

[2]

Gao D F, Liu T F, Wang G X. . Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Letters, 2021, 6( 2): 713– 727

[3]

Li L G, Wang P T, Shao Q. . Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Advanced Materials, 2021, 33( 50): 2004243

[4]

Liu L C, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118( 10): 4981– 5079

[5]

Han B C, Miranda C R, Ceder G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: a first-principles study. Physical Review B: Condensed Matter and Materials Physics, 2008, 77( 7): 075410

[6]

Zhang Y F, Qin J, Leng D Y. . Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts. Journal of Power Sources, 2021, 485 : 229340

[7]

Zhang J L, Vukmirovic M B, Xu Y. . Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 117( 14): 2170– 2173

[8]

Adzic R R Marinkovic N S. Platinum monolayer electrocatalysts. In: Kreysa G, Ota Ki, Savinell R F, eds. Encyclopedia of Applied Electrochemistry. New York: Springer, 2014

[9]

DeRita L, Dai S, Lopez-Zepeda K. . Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. Journal of the American Chemical Society, 2017, 139( 40): 14150– 14165

[10]

Wang D, Xin H L, Hovden R. . Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12( 1): 81– 87

[11]

Sasaki K, Kuttiyiel K A, Adzic R R. Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells. Current Opinion in Electrochemistry, 2020, 21 : 368– 375

[12]

Luo L X, Zhu F J, Tian R X. . Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catalysis, 2017, 7( 8): 5420– 5430

[13]

Su H, Soldatov M A, Roldugin V. . Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience, 2022, 2( 1): 102– 109

[14]

Zhang W, Zheng W T. Single atom excels as the smallest functional material. Advanced Functional Materials, 2016, 26( 18): 2988– 2993

[15]

Tian R X, Shen S Y, Zhu F J. . Icosahedral Pt-Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity. ChemSusChem, 2018, 11( 6): 1015– 1019

[16]

Yin P Q, Yao T, Wu Y E. . Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angewandte Chemie International Edition, 2016, 55( 36): 10800– 10805

[17]

Chen Y J, Ji S F, Chen C. . Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2( 7): 1242– 1264

[18]

Cui X J, Li W, Ryabchuk P. . Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1( 6): 385– 397

[19]

Zang W J, Sun T, Yang T. . Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33( 8): 2003846

[20]

Chen M, He Y, Spendelow J S. . Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Letters, 2019, 4( 7): 1619– 1633

[21]

Liu J, Jiao M G, Lu L L. . High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 2017, 8( 1): 15938

[22]

Yang S, Tak Y J, Kim J. . Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catalysis, 2017, 7( 2): 1301– 1307

[23]

Poerwoprajitno A R, Gloag L, Watt J. . A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5( 3): 231– 237

[24]

Wang X N, Zhao L M, Li X J. . Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nature Communications, 2022, 13( 1): 1596

[25]

Xia Y N, Xiong Y J, Lim B. . Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angewandte Chemie International Edition, 2009, 48( 1): 60– 103

[26]

Tan W, Xie S H, Cai Y D. . Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control. Environmental Science & Technology, 2021, 55( 18): 12607– 12618

[27]

Zhou M, Bao S J, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. Journal of the American Chemical Society, 2019, 141( 18): 7327– 7332

[28]

Peng Z M, Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 2009, 4( 2): 143– 164

[29]

Hussein H E M, Maurer R J, Amari H. . Tracking metal electrodeposition dynamics from nucleation and growth of a single atom to a crystalline nanoparticle. ACS Nano, 2018, 12( 7): 7388– 7396

[30]

Gupta A, Srivastava C. Nucleation and growth mechanism of tin electrodeposition on graphene oxide: a kinetic, thermodynamic and microscopic study. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2020, 861 : 113964

[31]

Altimari P, Pagnanelli F. Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: model development and validation. Electrochimica Acta, 2016, 206 : 116– 126

[32]

Yan Z H, Sun H M, Chen X. . Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nature Communications, 2018, 9( 1): 2373

[33]

Zhang L H, Han L L, Liu H X. . Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angewandte Chemie International Edition, 2017, 56( 44): 13900

[34]

Zhang Z R, Feng C, Liu C X. . Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11( 1): 1215

[35]

Zhang Z R, Feng C, Wang D D. . Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13( 1): 2473

[36]

Xue Y R, Huang B L, Yi Y P. . Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nature Communications, 2018, 9( 1): 1460

[37]

Yu H D, Xue Y R, Huang B L. . Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production. iScience, 2019, 11 : 31– 41

[38]

Shi Y, Lee C, Tan X Y. . Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small Structures, 2022, 3( 3): 2100185

[39]

Kottwitz M, Li Y Y, Wang H D. . Single atom catalysts: a review of characterization methods. Chemistry Methods, 2021, 1( 6): 278– 294

[40]

Fei H L, Dong J C, Feng Y X. . General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1( 1): 63– 72

[41]

Di Liberto G, Cipriano L A, Pacchioni G. Universal principles for the rational design of single atom electrocatalysts? handle with care.. ACS Catalysis, 2022, 12( 10): 5846– 5856

[42]

Liu J C, Xiao H, Li J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. Journal of the American Chemical Society, 2020, 142( 7): 3375– 3383

[43]

Wan J W, Chen W X, Jia C Y. . Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30( 11): 1705369

[44]

Wang X, Chen W X, Zhang L. . Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. Journal of the American Chemical Society, 2017, 139( 28): 9419– 9422

[45]

Wei H S, Liu X Y, Wang A Q. . FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5( 1): 5634

[46]

Zhang B W, Ren L, Xu Z F. . Atomic structural evolution of single-layer Pt clusters as efficient electrocatalysts. Small, 2021, 17( 26): 2100732

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (1611KB)

5632

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/