PDF
(3123KB)
Abstract
Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.
Graphical abstract
Keywords
hydrogen storage capacity
/
chemisorption
/
near-ambient-temperature
/
modification methods
/
alloy hydrides
Cite this article
Download citation ▾
Yiheng ZHANG, Shaofei WU, Liwei WANG, Xuefeng ZHANG.
Chemisorption solid materials for hydrogen storage near ambient temperature: a review.
Front. Energy, 2023, 17(1): 72-101 DOI:10.1007/s11708-022-0835-7
| [1] |
Muradov N Z, Veziroğlu T N. “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. International Journal of Hydrogen Energy, 2008, 33( 23): 6804– 6839
|
| [2] |
Egeland-Eriksen T, Hajizadeh A, Sartori S. Hydrogen-based systems for integration of renewable energy in power systems: achievements and perspectives. International Journal of Hydrogen Energy, 2021, 46( 63): 31963– 31983
|
| [3] |
Sandri O, Holdsworth S, Hayes J. . Hydrogen for all? Household energy vulnerability and the transition to hydrogen in Australia. Energy Research & Social Science, 2021, 79 : 102179
|
| [4] |
Hassan I A, Ramadan H S, Saleh M A. . Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renewable & Sustainable Energy Reviews, 2021, 149 : 111311
|
| [5] |
Ma Y, Wang X R, Li T. . Hydrogen and ethanol: production, storage, and transportation. International Journal of Hydrogen Energy, 2021, 46( 54): 27330– 27348
|
| [6] |
Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. International Journal of Hydrogen Energy, 2021, 46( 46): 23779– 23794
|
| [7] |
Roh H S, Hua T Q, Ahluwalia R K. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles. International Journal of Hydrogen Energy, 2013, 38( 29): 12795– 12802
|
| [8] |
Sadaghiani M S, Mehrpooya M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy, 2017, 42( 9): 6033– 6050
|
| [9] |
Elberry A M, Thakur J, Santasalo-Aarnio A. . Large-scale compressed hydrogen storage as part of renewable electricity storage systems. International Journal of Hydrogen Energy, 2021, 46( 29): 15671– 15690
|
| [10] |
Andersson J, Grönkvist S. Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 2019, 44( 23): 11901– 11919
|
| [11] |
Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. International Journal of Hydrogen Energy, 2010, 35( 10): 4524– 4533
|
| [12] |
Ali N A, Sazelee N A, Ismail M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. International Journal of Hydrogen Energy, 2021, 46( 62): 31674– 31698
|
| [13] |
Doğan M, Sabaz P, Bi̇ci̇l Z. . Activated carbon synthesis from tangerine peel and its use in hydrogen storage. Journal of the Energy Institute, 2020, 93( 6): 2176– 2185
|
| [14] |
Dillon A C, Jones K M, Bekkedahl T A. . Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386( 6623): 377– 379
|
| [15] |
Rajaura R S, Srivastava S, Sharma V. . Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 2016, 41( 22): 9454– 9461
|
| [16] |
Shet S P, Shanmuga Priya S, Sudhakar K. . A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2021, 46( 21): 11782– 11803
|
| [17] |
Song Y, Dai J H. Mechanisms of dopants influence on hydrogen uptake in COF-108: a first principles study. International Journal of Hydrogen Energy, 2013, 38( 34): 14668– 14674
|
| [18] |
Chauhan P K, Parameshwaran R, Kannan P. . Hydrogen storage in porous polymer derived Silicon Oxycarbide ceramics: outcomes and perspectives. Ceramics International, 2021, 47( 2): 2591– 2599
|
| [19] |
Ioannatos G E, Verykios X E. H2 storage on single- and multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010, 35( 2): 622– 628
|
| [20] |
Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2007, 32( 9): 1121– 1140
|
| [21] |
Rusman N A A, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 2016, 41( 28): 12108– 12126
|
| [22] |
Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. Journal of Physical Chemistry B, 2005, 109( 15): 7188– 7194
|
| [23] |
Sandrock G D. A new family of hydrogen storage alloys based on the system nickel-mischmetal-calcium. In: Proceedings of the 12th Intersociety Energy Conversion Engineering Conference 1977, 770828
|
| [24] |
Zhu Z, Zhu S, Lu H. . Stability of LaNi5-xCox alloys cycled in hydrogen—part 1 evolution in gaseous hydrogen storage performance. International Journal of Hydrogen Energy, 2019, 44( 29): 15159– 15172
|
| [25] |
Srivastava S, Panwar K. Investigations on microstructures of ball-milled MmNi5 hydrogen storage alloy. Materials Research Bulletin, 2016, 73 : 284– 289
|
| [26] |
Guo F, Namba K, Miyaoka H. . Hydrogen storage behavior of TiFe alloy activated by different methods. Materials Letters: X, 2021, 9 : 100061
|
| [27] |
Zhou P, Cao Z, Xiao X. . Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage. Journal of Alloys and Compounds, 2021, 875 : 160035
|
| [28] |
Graetz J, Reilly J J. Decomposition kinetics of the AlH3 polymorphs. Journal of Physical Chemistry B, 2005, 109( 47): 22181– 22185
|
| [29] |
Ahluwalia R K, Hua T Q, Peng J K. Automotive storage of hydrogen in alane. International Journal of Hydrogen Energy, 2009, 34( 18): 7731– 7740
|
| [30] |
Sleiman S, Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy. Journal of Alloys and Compounds, 2021, 861 : 158615
|
| [31] |
de Almeida Neto G R, Gonçalves Beatrice C A, Leiva D R. . Polyetherimide-LaNi5 composite films for hydrogen storage applications. International Journal of Hydrogen Energy, 2021, 46( 46): 23767– 23778
|
| [32] |
Mueller W M. The rare-earth hydrides. In: Mueller W M, Blackledge J P, Libowitz G G. Metal Hydrides. New York: Academic Press, 1968, 384– 440
|
| [33] |
Young K. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier, 2018
|
| [34] |
Sandrock G D, Murray J J, Post M L. . Hydrides and deuterides of CaNi5. Materials Research Bulletin, 1982, 17( 7): 887– 894
|
| [35] |
Lee Y J, Lee J Y, Park J K. A study on the hydride formation of TiFe and its alloys. Journal of the Korean Institute of Metals, 1982, 20( 11): 969– 974
|
| [36] |
The Hydrogen Fuel Cell Technologies Office. DOE target for hydrogen storage. Washington, DC, USA, 2022
|
| [37] |
Keçebaş A Kayfeci M. Hydrogen properties. In: Calise F, D’Accadia M D, Santarelli M, eds. Calise F, D’Accadia M D, Santarelli M, eds, 2019
|
| [38] |
Idriss H Scott M Subramani V. Introduction to hydrogen and its properties. In: Subramani V, Basile A, Veziroğlu T N, eds. Subramani V, Basile A, Veziroğlu T N, eds, 2015
|
| [39] |
Fukai Y. The Metal-Hydrogen System: Basic Bulk Properties. Berlin: Springer, 2005
|
| [40] |
Züttel A. Fuels–hydrogen storage|hydrides. In: Garche J, ed. Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009, 440– 458
|
| [41] |
Stein F, Leineweber A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science, 2021, 56( 9): 5321– 5427
|
| [42] |
Lawrence Berkeley National Laboratory. Lattice structure. San Francisco, USA, 2022
|
| [43] |
Acha E, Requies J M, Cambra J F. Hydrogen purification methods: Iron-based redox processes, adsorption, and metal hydrides. In: Subramani V, Basile A, Veziroğlu T N. Compendium of Hydrogen Energy: Hydrogen Production and Purification. Cambridge: Woodhead Publishing, 2015, 395– 417
|
| [44] |
Shashikala K. Hydrogen storage materials. In: Banerjee S, Tyagi A K. Functional Materials. Amsterdam: Elsevier, 2012, 607– 637
|
| [45] |
Nakamura Y, Sakaki K, Kim H. . Reaction paths via a new transient phase in non-equilibrium hydrogen absorption of LaNi2Co3. International Journal of Hydrogen Energy, 2020, 45( 41): 21655– 21665
|
| [46] |
Yang F, Wang J, Zhang Y. . Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2022, 47( 21): 11236– 11249
|
| [47] |
Stentson N T, McWhorter S, Ahn C C. Introduction to hydrogen storage. In: Gupta R B, Basile A, Veziroğlu T N, eds. Compendium of Hydrogen Energy: Hydrogen Storage, Transportation and Infrastructure. Cambridge: Woodhead Publishing, 2016, 3– 25
|
| [48] |
Saini N, Pandey C, Mahapatra M M. Effect of diffusible hydrogen content on embrittlement of P92 steel. International Journal of Hydrogen Energy, 2017, 42( 27): 17328– 17338
|
| [49] |
Liu Y, Pan H. Hydrogen storage materials. In: Suib S L. New and Future Developments in Catalysis: Batteries, Hydrogen Storage and Fuel Cells. Amsterdam: Elsevier, 2013, 377– 405
|
| [50] |
Chandra D. Intermetallics for hydrogen storage. In: Walker G. Solid-State Hydrogen Storage. Cambridge: Woodhead Publishing, 2008, 315– 356
|
| [51] |
Maeland A J. Hydrides for hydrogen storage. In: Peruzzini M, Poli R. Recent advances in hydride chemistry. Amsterdam: Elsevier, 2001, 531– 556
|
| [52] |
Heubner F, Hilger A, Kardjilov N. . In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage. Journal of Power Sources, 2018, 397 : 262– 270
|
| [53] |
Goto K, Ozaki S, Nakao W. Effect of diffusion coefficient variation on interrelation between hydrogen diffusion and induced internal stress in hydrogen storage alloys. Journal of Alloys and Compounds, 2017, 691 : 705– 712
|
| [54] |
Zhang Y, Wei X, Zhang W. . Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. International Journal of Hydrogen Energy, 2020, 45( 58): 33832– 33845
|
| [55] |
Yong H, Wei X, Zhang K. . Characterization of microstructure, hydrogen storage kinetics and thermodynamics of ball-milled Mg90Y1.5Ce1.5Ni7 alloy. International Journal of Hydrogen Energy, 2021, 46( 34): 17802– 17813
|
| [56] |
Rattan Paul D, Sharma A, Panchal P. . Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application. Materials Today: Proceedings, 2021, 42 : 1673– 1677
|
| [57] |
Lv J, Wang Q, Chen P. . Effect of ball-milling time and Pd addition on electrochemical hydrogen storage performance of Co2B alloy. Solid State Sciences, 2020, 103 : 106184
|
| [58] |
Chen Z, Luo L, Su Z. . Effect of LaH3 additive on microstructures and hydrogen storage properties of V40Ti26Cr26Fe8 alloys prepared by hydride powder sintering method. International Journal of Hydrogen Energy, 2019, 44( 26): 13538– 13548
|
| [59] |
Zaluska A Zaluski L Ström-Olsen J O. Lithium-beryllium hydrides: the lightest reversible metal hydrides. Journal of Alloys and Compounds, 2000, 307( 1–2): 157– 166
|
| [60] |
Fromm K M. Chemistry of alkaline earth metals: it is not all ionic and definitely not boring! Coordination Chemistry Reviews, 2020, 408: 213193
|
| [61] |
Zhang Y, Shimoda K, Miyaoka H. . Thermal decomposition of alkaline-earth metal hydride and ammonia borane composites. International Journal of Hydrogen Energy, 2010, 35( 22): 12405– 12409
|
| [62] |
George L, Saxena S K. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: a review. International Journal of Hydrogen Energy, 2010, 35( 11): 5454– 5470
|
| [63] |
Zhang X, Liu Y, Ren Z. . Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy & Environmental Science, 2021, 14( 4): 2302– 2313
|
| [64] |
Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. Journal of Alloys and Compounds, 2001, 315( 1–2): 237– 242
|
| [65] |
Liang G, Huot J, Boily S. . Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds, 1999, 292( 1–2): 247– 252
|
| [66] |
Huot J, Ravnsbæk D B, Zhang J. . Mechanochemical synthesis of hydrogen storage materials. Progress in Materials Science, 2013, 58( 1): 30– 75
|
| [67] |
Zhang X, Shen Z, Jian N. . A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2018, 43( 52): 23327– 23335
|
| [68] |
Zhang X, Leng Z, Gao M. . Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. Journal of Power Sources, 2018, 398 : 183– 192
|
| [69] |
Zhou C, Fang Z Z, Ren C. . Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. Journal of Physical Chemistry C, 2013, 117( 25): 12973– 12980
|
| [70] |
Boukhvalov D W, Katsnelson M I, Lichtenstein A I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B: Condensed Matter and Materials Physics, 2008, 77( 3): 035427
|
| [71] |
Levesque D, Gicquel A, Darkrim F L. . Monte Carlo simulations of hydrogen storage in carbon nanotubes. Journal of Physics Condensed Matter, 2002, 14( 40): 9285– 9293
|
| [72] |
Xie X, Hou C, Chen C. . First-principles studies in Mg-based hydrogen storage materials: a review. Energy, 2020, 211 : 118959
|
| [73] |
Bahou S, Labrim H, Lakhal M. . Magnesium vacancies and hydrogen doping in MgH2 for improving gravimetric capacity and desorption temperature. International Journal of Hydrogen Energy, 2021, 46( 2): 2322– 2329
|
| [74] |
Lakhal M, Bhihi M, Benyoussef A. . The hydrogen ab/desorption kinetic properties of doped magnesium hydride MgH2 systems by first principles calculations and kinetic Monte Carlo simulations. International Journal of Hydrogen Energy, 2015, 40( 18): 6137– 6144
|
| [75] |
Edalati K, Uehiro R, Ikeda Y. . Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Materialia, 2018, 149 : 88– 96
|
| [76] |
Zhang J, Zhu Y, Yao L. . State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. Journal of Alloys and Compounds, 2019, 782 : 796– 823
|
| [77] |
Kong V C Y, Kirk D W, Foulkes F R. . Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride. International Journal of Hydrogen Energy, 2003, 28( 2): 205– 214
|
| [78] |
Xiao Y, Wu C, Wu H. . Hydrogen generation by CaH2-induced hydrolysis of Mg17Al12 hydride. International Journal of Hydrogen Energy, 2011, 36( 24): 15698– 15703
|
| [79] |
Kojima Y, Suzuki K I, Fukumoto K. . Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy, 2002, 27( 10): 1029– 1034
|
| [80] |
Liang G, Huot J, Schulz R. Mechanical alloying and hydrogen storage properties of CaNi5-based alloys. Journal of Alloys and Compounds, 2001, 321( 1): 146– 150
|
| [81] |
Chumphongphan S, Paskevicius M, Sheppard D A. . Cycle life and hydrogen storage properties of mechanical alloyed Ca1−xZrxNi5−yCry; (x = 0, 0.05 and y = 0, 0.1). International Journal of Hydrogen Energy, 2012, 37( 9): 7586– 7593
|
| [82] |
Liang G, Schulz R. Phase structures and hydrogen storage properties of Ca-Mg-Ni alloys prepared by mechanical alloying. Journal of Alloys and Compound, 2003, 356–357 : 612– 616
|
| [83] |
Si T Z, Zhang Q A, Pang G. . Structural characteristics and hydrogen storage properties of Ca3.0−xMgxNi9 (x = 0.5, 1.0, 1.5 and 2.0) alloys. International Journal of Hydrogen Energy, 2009, 34( 3): 1483– 1488
|
| [84] |
Shan X, Payer J H, Wainright J S. Increased performance of hydrogen storage by Pd-treated LaNi4.7Al0.3, CaNi5 and Mg2Ni. Journal of Alloys and Compounds, 2006, 426( 1–2): 400– 407
|
| [85] |
Shan X, Payer J H, Wainright J S. Improved durability of hydrogen storage alloys. Journal of Alloys and Compounds, 2007, 430( 1–2): 262– 268
|
| [86] |
Takeshita H T, Sakamoto Y, Takeichi N. . Synthesis of CaNi1−xPdx (0.1≤x≤1) alloys and hydrogenation properties of CaPd. Journal of Alloys and Compounds, 2002, 347( 1–2): 231– 238
|
| [87] |
Ma L, Sun Y, Wang L. . Calcium decoration of boron nitride nanotubes with vacancy defects as potential hydrogen storage materials: a first-principles investigation. Materials Today. Communications, 2021, 26 : 101985
|
| [88] |
Mao J, Guo P, Zhang T. . A first-principle study on hydrogen storage of metal atoms (M = Li, Ca, Sc, and Ti) coated B40 fullerene composites. Computational & Theoretical Chemistry, 2020, 1181 : 112823
|
| [89] |
Yoon M, Yang S, Hicke C. . Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Physical Review Letters, 2008, 100( 20): 206806
|
| [90] |
Ataca C, Aktürk E, Ciraci S. Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79( 4): 041406
|
| [91] |
Lee H, Ihm J, Cohen M L. . Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Letters, 2010, 10( 3): 793– 798
|
| [92] |
Gao Y, Zhao N, Li J. . Hydrogen spillover storage on Ca-decorated graphene. International Journal of Hydrogen Energy, 2012, 37( 16): 11835– 11841
|
| [93] |
Gambini M, Stilo T, Vellini M. Selection of metal hydrides for a thermal energy storage device to support low-temperature concentrating solar power plants. International Journal of Hydrogen Energy, 2020, 45( 53): 28404– 28425
|
| [94] |
Mukherjee D, Höllerhage T, Leich V. . The nature of the heavy alkaline earth metal–hydrogen bond: synthesis, structure, and reactivity of a cationic strontium hydride cluster. Journal of the American Chemical Society, 2018, 140( 9): 3403– 3411
|
| [95] |
Hosseinabadi N. The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications. International Journal of Hydrogen Energy, 2021, 46( 7): 5025– 5044
|
| [96] |
Bruzzone G, Costa G, Ferretti M. . Hydrogen storage in a beryllium substituted TiFe compound. International Journal of Hydrogen Energy, 1980, 5( 3): 317– 322
|
| [97] |
Li D, Ouyang Y, Li J. . Hydrogen storage of beryllium adsorbed on graphene doping with boron: first-principles calculations. Solid State Communications, 2012, 152( 5): 422– 425
|
| [98] |
Rahimi R, Solimannejad M. First-principles study of superior hydrogen storage performance of Li-decorated Be2N6 monolayer. International Journal of Hydrogen Energy, 2020, 45( 38): 19465– 19478
|
| [99] |
Wang Y J, Xu L, Qiao L H. . Ultra-high capacity hydrogen storage of B6Be2 and B8Be2 clusters. International Journal of Hydrogen Energy, 2020, 45( 23): 12932– 12939
|
| [100] |
Castillo-Alvarado F L, Ortiz-Lopez J, Arellano J S. . Hydrogen storage on beryllium-coated toroidal carbon nanostructure C120 modeled with density functional theory. Advances in Science and Technology (Owerri, Nigeria), 2010, 72 : 188– 195
|
| [101] |
Ghosh S, Padmanabhan V. Beryllium-doped single-walled carbon nanotubes with Stone-Wales defects: a promising material to store hydrogen at room temperature. International Journal of Hydrogen Energy, 2017, 42( 38): 24237– 24246
|
| [102] |
Beheshtian J, Ravaei I. Hydrogen storage by BeO nano-cage: a DFT study. Applied Surface Science, 2016, 368 : 76– 81
|
| [103] |
Liu J, Li K, Cheng H. . New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5−xAlx alloys. International Journal of Hydrogen Energy, 2017, 42( 39): 24904– 24914
|
| [104] |
Molinas B, Pontarollo A, Scapin M. . The optimization of MmNi5−xAlx hydrogen storage alloy for sea or lagoon navigation and transportation. International Journal of Hydrogen Energy, 2016, 41( 32): 14484– 14490
|
| [105] |
Mohammadshahi S S, Gould T, Gray E M. . An improved model for metal-hydrogen storage tanks–Part 1: model development. International Journal of Hydrogen Energy, 2016, 41( 5): 3537– 3550
|
| [106] |
Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
|
| [107] |
Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
|
| [108] |
Chandra S, Sharma P, Muthukumar P. . Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins. International Journal of Hydrogen Energy, 2020, 45( 15): 8794– 8809
|
| [109] |
Oi T, Maki K, Sakaki Y. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger. Journal of Power Sources, 2004, 125( 1): 52– 61
|
| [110] |
Afzal M, Mane R, Sharma P. Heat transfer techniques in metal hydride hydrogen storage: a review. International Journal of Hydrogen Energy, 2017, 42( 52): 30661– 30682
|
| [111] |
Rodríguez Sánchez A, Klein H P, Groll M. Expanded graphite as heat transfer matrix in metal hydride beds. International Journal of Hydrogen Energy, 2003, 28( 5): 515– 527
|
| [112] |
Ferekh S, Gwak G, Kyoung S. . Numerical comparison of heat-fin- and metal-foam-based hydrogen storage beds during hydrogen charging process. International Journal of Hydrogen Energy, 2015, 40( 42): 14540– 14550
|
| [113] |
Eisapour A H, Naghizadeh A, Eisapour M. . Optimal design of a metal hydride hydrogen storage bed using a helical coil heat exchanger along with a central return tube during the absorption process. International Journal of Hydrogen Energy, 2021, 46( 27): 14478– 14493
|
| [114] |
Urunkar R U, Patil S D. Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids. International Journal of Hydrogen Energy, 2021, 46( 37): 19486– 19497
|
| [115] |
Afzal M, Sharma P. Design and computational analysis of a metal hydride hydrogen storage system with hexagonal honeycomb based heat transfer enhancements—part A. International Journal of Hydrogen Energy, 2021, 46( 24): 13116– 13130
|
| [116] |
Melnichuk M, Silin N, Peretti H A. Optimized heat transfer fin design for a metal-hydride hydrogen storage container. International Journal of Hydrogen Energy, 2009, 34( 8): 3417– 3424
|
| [117] |
Laurencelle F, Goyette J. Simulation of heat transfer in a metal hydride reactor with aluminium foam. International Journal of Hydrogen Energy, 2007, 32( 14): 2957– 2964
|
| [118] |
Pohlmann C, Röntzsch L, Weißgärber T. . Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications. International Journal of Hydrogen Energy, 2013, 38( 3): 1685– 1691
|
| [119] |
Nguyen H Q, Shabani B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. International Journal of Hydrogen Energy, 2021, 46( 62): 31699– 31726
|
| [120] |
Li F, Zhao J, Tian D. . Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles. Journal of Applied Physics, 2009, 105( 4): 043707
|
| [121] |
Qu H, Du J, Pu C. . Effects of Co introduction on hydrogen storage properties of Ti-Fe-Mn alloys. International Journal of Hydrogen Energy, 2015, 40( 6): 2729– 2735
|
| [122] |
Zhang Y, Wei X, Gao J. . Electrochemical hydrogen storage behaviors of as-milled Mg-Ti-Ni-Co-Al-based alloys applied to Ni-MH battery. Electrochimica Acta, 2020, 342 : 136123
|
| [123] |
Zheng W, Song W, Wu T. . Experimental investigation and thermodynamic modeling of the ternary Ti-Fe-Mn system for hydrogen storage applications. Journal of Alloys and Compounds, 2022, 891 : 161957
|
| [124] |
Liu S, Qiu G, Liu X. . Structures and properties of TiMn2–5x(V4Fe)x(x = 0.30, 0.35) hydrogen storage alloys. Rare Metal Materials and Engineering, 2010, 39( 2): 214– 218
|
| [125] |
Dematteis E M, Dreistadt D M, Capurso G. . Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. Journal of Alloys and Compounds, 2021, 874 : 159925
|
| [126] |
Yang T, Wang P, Xia C. . Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy. International Journal of Hydrogen Energy, 2020, 45( 21): 12071– 12081
|
| [127] |
Nayebossadri S, Book D. Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression. Renewable Energy, 2019, 143 : 1010– 1021
|
| [128] |
Sathe R Y, Bae H, Lee H. . Hydrogen storage capacity of low-lying isomer of C24 functionalized with Ti. International Journal of Hydrogen Energy, 2020, 45( 16): 9936– 9945
|
| [129] |
Feng B, Zhang J, Zhong Q. . Experimental realization of two-dimensional boron sheets. Nature Chemistry, 2016, 8( 6): 563– 568
|
| [130] |
Peng B, Zhang H, Shao H. . Stability and strength of atomically thin borophene from first principles calculations. Materials Research Letters, 2017, 5( 6): 399– 407
|
| [131] |
Wen T Z, Xie A Z, Li J L. . Novel Ti-decorated borophene χ3 as potential high-performance for hydrogen storage medium. International Journal of Hydrogen Energy, 2020, 45( 53): 29059– 29069
|
| [132] |
Lebon A, Carrete J, Gallego L J. . Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. International Journal of Hydrogen Energy, 2015, 40( 14): 4960– 4968
|
| [133] |
Grew K N, Brownlee Z B, Shukla K C. . Assessment of alane as a hydrogen storage media for portable fuel cell power sources. Journal of Power Sources, 2012, 217 : 417– 430
|
| [134] |
Wang L, Rawal A, Aguey-Zinsou K F. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chemical Engineering Science, 2019, 194 : 64– 70
|
| [135] |
Liang L, Wang C, Ren M. . Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Applied Materials & Interfaces, 2021, 13( 23): 26998– 27005
|
| [136] |
Ianni E, Sofianos M V, Rowles M R. . Synthesis of NaAlH4/Al composites and their applications in hydrogen storage. International Journal of Hydrogen Energy, 2018, 43( 36): 17309– 17317
|
| [137] |
Urbanczyk R, Peinecke K, Felderhoff M. . Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6. International Journal of Hydrogen Energy, 2014, 39( 30): 17118– 17128
|
| [138] |
Huang Y, Shao H, Zhang Q. . Layer-by-layer uniformly confined Graphene-NaAlH4 composites and hydrogen storage performance. International Journal of Hydrogen Energy, 2020, 45( 52): 28116– 28122
|
| [139] |
Montero J, Ek G, Sahlberg M. . Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy. Scripta Materialia, 2021, 194 : 113699
|
| [140] |
Edalati P, Floriano R, Mohammadi A. . Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Materialia, 2020, 178 : 387– 390
|
| [141] |
Tu B, Wang H, Wang Y. . Optimizing Ti-Zr-Cr-Mn-Ni-V alloys for hybrid hydrogen storage tank of fuel cell bicycle. International Journal of Hydrogen Energy, 2022, 47( 33): 14952– 14960
|
| [142] |
Kunce I, Polanski M, Bystrzycki J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). International Journal of Hydrogen Energy, 2014, 39( 18): 9904– 9910
|
| [143] |
Liu P, Xie X, Xu L. . Hydrogen storage properties of (Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) alloys easily activated at room temperature. Progress in Natural Science, 2017, 27( 6): 652– 657
|
| [144] |
Hu J, Shen H, Jiang M. . A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo. Nanomaterials (Basel, Switzerland), 2019, 9( 3): 461
|
| [145] |
Shen H, Zhang J, Hu J. . A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage. Nanomaterials (Basel, Switzerland), 2019, 9( 2): 248
|
| [146] |
Higuchi K, Yamamoto K, Kajioka H. . Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. Journal of Alloys and Compounds, 2002, 330–332 : 526– 530
|
| [147] |
Reddy G L N, Kumar S. Reversible hydrogen storage in vapour deposited Mg-5 at.% Pd powder composites. International Journal of Hydrogen Energy, 2014, 39( 9): 4421– 4426
|
| [148] |
Han B, Yu S, Wang H. . Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scripta Materialia, 2022, 216 : 114736
|
| [149] |
Liu S, Liu J, Liu X. . Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nature Nanotechnology, 2021, 16( 3): 331– 336
|
RIGHTS & PERMISSIONS
Higher Education Press 2022