Chemisorption solid materials for hydrogen storage near ambient temperature: a review
Yiheng ZHANG, Shaofei WU, Liwei WANG, Xuefeng ZHANG
Chemisorption solid materials for hydrogen storage near ambient temperature: a review
Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.
hydrogen storage capacity / chemisorption / near-ambient-temperature / modification methods / alloy hydrides
[1] |
Muradov N Z, Veziroğlu T N. “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. International Journal of Hydrogen Energy, 2008, 33( 23): 6804– 6839
CrossRef
Google scholar
|
[2] |
Egeland-Eriksen T, Hajizadeh A, Sartori S. Hydrogen-based systems for integration of renewable energy in power systems: achievements and perspectives. International Journal of Hydrogen Energy, 2021, 46( 63): 31963– 31983
CrossRef
Google scholar
|
[3] |
Sandri O, Holdsworth S, Hayes J.
CrossRef
Google scholar
|
[4] |
Hassan I A, Ramadan H S, Saleh M A.
CrossRef
Google scholar
|
[5] |
Ma Y, Wang X R, Li T.
CrossRef
Google scholar
|
[6] |
Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. International Journal of Hydrogen Energy, 2021, 46( 46): 23779– 23794
CrossRef
Google scholar
|
[7] |
Roh H S, Hua T Q, Ahluwalia R K. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles. International Journal of Hydrogen Energy, 2013, 38( 29): 12795– 12802
CrossRef
Google scholar
|
[8] |
Sadaghiani M S, Mehrpooya M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy, 2017, 42( 9): 6033– 6050
CrossRef
Google scholar
|
[9] |
Elberry A M, Thakur J, Santasalo-Aarnio A.
CrossRef
Google scholar
|
[10] |
Andersson J, Grönkvist S. Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 2019, 44( 23): 11901– 11919
CrossRef
Google scholar
|
[11] |
Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. International Journal of Hydrogen Energy, 2010, 35( 10): 4524– 4533
CrossRef
Google scholar
|
[12] |
Ali N A, Sazelee N A, Ismail M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. International Journal of Hydrogen Energy, 2021, 46( 62): 31674– 31698
CrossRef
Google scholar
|
[13] |
Doğan M, Sabaz P, Bi̇ci̇l Z.
CrossRef
Google scholar
|
[14] |
Dillon A C, Jones K M, Bekkedahl T A.
CrossRef
Google scholar
|
[15] |
Rajaura R S, Srivastava S, Sharma V.
CrossRef
Google scholar
|
[16] |
Shet S P, Shanmuga Priya S, Sudhakar K.
CrossRef
Google scholar
|
[17] |
Song Y, Dai J H. Mechanisms of dopants influence on hydrogen uptake in COF-108: a first principles study. International Journal of Hydrogen Energy, 2013, 38( 34): 14668– 14674
CrossRef
Google scholar
|
[18] |
Chauhan P K, Parameshwaran R, Kannan P.
CrossRef
Google scholar
|
[19] |
Ioannatos G E, Verykios X E. H2 storage on single- and multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010, 35( 2): 622– 628
CrossRef
Google scholar
|
[20] |
Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2007, 32( 9): 1121– 1140
CrossRef
Google scholar
|
[21] |
Rusman N A A, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 2016, 41( 28): 12108– 12126
CrossRef
Google scholar
|
[22] |
Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. Journal of Physical Chemistry B, 2005, 109( 15): 7188– 7194
CrossRef
Google scholar
|
[23] |
Sandrock G D. A new family of hydrogen storage alloys based on the system nickel-mischmetal-calcium. In: Proceedings of the 12th Intersociety Energy Conversion Engineering Conference 1977, 770828
|
[24] |
Zhu Z, Zhu S, Lu H.
CrossRef
Google scholar
|
[25] |
Srivastava S, Panwar K. Investigations on microstructures of ball-milled MmNi5 hydrogen storage alloy. Materials Research Bulletin, 2016, 73 : 284– 289
CrossRef
Google scholar
|
[26] |
Guo F, Namba K, Miyaoka H.
CrossRef
Google scholar
|
[27] |
Zhou P, Cao Z, Xiao X.
CrossRef
Google scholar
|
[28] |
Graetz J, Reilly J J. Decomposition kinetics of the AlH3 polymorphs. Journal of Physical Chemistry B, 2005, 109( 47): 22181– 22185
CrossRef
Google scholar
|
[29] |
Ahluwalia R K, Hua T Q, Peng J K. Automotive storage of hydrogen in alane. International Journal of Hydrogen Energy, 2009, 34( 18): 7731– 7740
CrossRef
Google scholar
|
[30] |
Sleiman S, Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy. Journal of Alloys and Compounds, 2021, 861 : 158615
CrossRef
Google scholar
|
[31] |
de Almeida Neto G R, Gonçalves Beatrice C A, Leiva D R.
CrossRef
Google scholar
|
[32] |
Mueller W M. The rare-earth hydrides. In: Mueller W M, Blackledge J P, Libowitz G G. Metal Hydrides. New York: Academic Press, 1968,
|
[33] |
Young K. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier, 2018
|
[34] |
Sandrock G D, Murray J J, Post M L.
CrossRef
Google scholar
|
[35] |
Lee Y J, Lee J Y, Park J K. A study on the hydride formation of TiFe and its alloys. Journal of the Korean Institute of Metals, 1982, 20( 11): 969– 974
|
[36] |
The Hydrogen Fuel Cell Technologies Office. DOE target for hydrogen storage. Washington, DC, USA, 2022
|
[37] |
Keçebaş A Kayfeci M. Hydrogen properties. In: Calise F, D’Accadia M D, Santarelli M, eds. Calise F, D’Accadia M D, Santarelli M, eds, 2019
|
[38] |
Idriss H Scott M Subramani V. Introduction to hydrogen and its properties. In: Subramani V, Basile A, Veziroğlu T N, eds. Subramani V, Basile A, Veziroğlu T N, eds, 2015
|
[39] |
Fukai Y. The Metal-Hydrogen System: Basic Bulk Properties. Berlin: Springer, 2005
|
[40] |
Züttel A. Fuels–hydrogen storage|hydrides. In: Garche J, ed. Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009,
CrossRef
Google scholar
|
[41] |
Stein F, Leineweber A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science, 2021, 56( 9): 5321– 5427
CrossRef
Google scholar
|
[42] |
Lawrence Berkeley National Laboratory. Lattice structure. San Francisco, USA, 2022
|
[43] |
Acha E, Requies J M, Cambra J F. Hydrogen purification methods: Iron-based redox processes, adsorption, and metal hydrides. In: Subramani V, Basile A, Veziroğlu T N. Compendium of Hydrogen Energy: Hydrogen Production and Purification. Cambridge: Woodhead Publishing, 2015,
|
[44] |
Shashikala K. Hydrogen storage materials. In: Banerjee S, Tyagi A K. Functional Materials. Amsterdam: Elsevier, 2012,
|
[45] |
Nakamura Y, Sakaki K, Kim H.
CrossRef
Google scholar
|
[46] |
Yang F, Wang J, Zhang Y.
CrossRef
Google scholar
|
[47] |
Stentson N T, McWhorter S, Ahn C C. Introduction to hydrogen storage. In: Gupta R B, Basile A, Veziroğlu T N, eds. Compendium of Hydrogen Energy: Hydrogen Storage, Transportation and Infrastructure. Cambridge: Woodhead Publishing, 2016,
|
[48] |
Saini N, Pandey C, Mahapatra M M. Effect of diffusible hydrogen content on embrittlement of P92 steel. International Journal of Hydrogen Energy, 2017, 42( 27): 17328– 17338
CrossRef
Google scholar
|
[49] |
Liu Y, Pan H. Hydrogen storage materials. In: Suib S L. New and Future Developments in Catalysis: Batteries, Hydrogen Storage and Fuel Cells. Amsterdam: Elsevier, 2013,
|
[50] |
Chandra D. Intermetallics for hydrogen storage. In: Walker G. Solid-State Hydrogen Storage. Cambridge: Woodhead Publishing, 2008,
|
[51] |
Maeland A J. Hydrides for hydrogen storage. In: Peruzzini M, Poli R. Recent advances in hydride chemistry. Amsterdam: Elsevier, 2001,
|
[52] |
Heubner F, Hilger A, Kardjilov N.
CrossRef
Google scholar
|
[53] |
Goto K, Ozaki S, Nakao W. Effect of diffusion coefficient variation on interrelation between hydrogen diffusion and induced internal stress in hydrogen storage alloys. Journal of Alloys and Compounds, 2017, 691 : 705– 712
CrossRef
Google scholar
|
[54] |
Zhang Y, Wei X, Zhang W.
CrossRef
Google scholar
|
[55] |
Yong H, Wei X, Zhang K.
CrossRef
Google scholar
|
[56] |
Rattan Paul D, Sharma A, Panchal P.
CrossRef
Google scholar
|
[57] |
Lv J, Wang Q, Chen P.
CrossRef
Google scholar
|
[58] |
Chen Z, Luo L, Su Z.
CrossRef
Google scholar
|
[59] |
Zaluska A Zaluski L Ström-Olsen J O. Lithium-beryllium hydrides: the lightest reversible metal hydrides. Journal of Alloys and Compounds, 2000, 307( 1–2): 157– 166
|
[60] |
Fromm K M. Chemistry of alkaline earth metals: it is not all ionic and definitely not boring! Coordination Chemistry Reviews, 2020, 408: 213193
|
[61] |
Zhang Y, Shimoda K, Miyaoka H.
CrossRef
Google scholar
|
[62] |
George L, Saxena S K. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: a review. International Journal of Hydrogen Energy, 2010, 35( 11): 5454– 5470
CrossRef
Google scholar
|
[63] |
Zhang X, Liu Y, Ren Z.
CrossRef
Google scholar
|
[64] |
Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. Journal of Alloys and Compounds, 2001, 315( 1–2): 237– 242
CrossRef
Google scholar
|
[65] |
Liang G, Huot J, Boily S.
CrossRef
Google scholar
|
[66] |
Huot J, Ravnsbæk D B, Zhang J.
CrossRef
Google scholar
|
[67] |
Zhang X, Shen Z, Jian N.
CrossRef
Google scholar
|
[68] |
Zhang X, Leng Z, Gao M.
CrossRef
Google scholar
|
[69] |
Zhou C, Fang Z Z, Ren C.
CrossRef
Google scholar
|
[70] |
Boukhvalov D W, Katsnelson M I, Lichtenstein A I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B: Condensed Matter and Materials Physics, 2008, 77( 3): 035427
CrossRef
Google scholar
|
[71] |
Levesque D, Gicquel A, Darkrim F L.
CrossRef
Google scholar
|
[72] |
Xie X, Hou C, Chen C.
CrossRef
Google scholar
|
[73] |
Bahou S, Labrim H, Lakhal M.
CrossRef
Google scholar
|
[74] |
Lakhal M, Bhihi M, Benyoussef A.
CrossRef
Google scholar
|
[75] |
Edalati K, Uehiro R, Ikeda Y.
CrossRef
Google scholar
|
[76] |
Zhang J, Zhu Y, Yao L.
CrossRef
Google scholar
|
[77] |
Kong V C Y, Kirk D W, Foulkes F R.
CrossRef
Google scholar
|
[78] |
Xiao Y, Wu C, Wu H.
CrossRef
Google scholar
|
[79] |
Kojima Y, Suzuki K I, Fukumoto K.
CrossRef
Google scholar
|
[80] |
Liang G, Huot J, Schulz R. Mechanical alloying and hydrogen storage properties of CaNi5-based alloys. Journal of Alloys and Compounds, 2001, 321( 1): 146– 150
CrossRef
Google scholar
|
[81] |
Chumphongphan S, Paskevicius M, Sheppard D A.
CrossRef
Google scholar
|
[82] |
Liang G, Schulz R. Phase structures and hydrogen storage properties of Ca-Mg-Ni alloys prepared by mechanical alloying. Journal of Alloys and Compound, 2003, 356–357 : 612– 616
CrossRef
Google scholar
|
[83] |
Si T Z, Zhang Q A, Pang G.
CrossRef
Google scholar
|
[84] |
Shan X, Payer J H, Wainright J S. Increased performance of hydrogen storage by Pd-treated LaNi4.7Al0.3, CaNi5 and Mg2Ni. Journal of Alloys and Compounds, 2006, 426( 1–2): 400– 407
CrossRef
Google scholar
|
[85] |
Shan X, Payer J H, Wainright J S. Improved durability of hydrogen storage alloys. Journal of Alloys and Compounds, 2007, 430( 1–2): 262– 268
CrossRef
Google scholar
|
[86] |
Takeshita H T, Sakamoto Y, Takeichi N.
CrossRef
Google scholar
|
[87] |
Ma L, Sun Y, Wang L.
CrossRef
Google scholar
|
[88] |
Mao J, Guo P, Zhang T.
CrossRef
Google scholar
|
[89] |
Yoon M, Yang S, Hicke C.
CrossRef
Google scholar
|
[90] |
Ataca C, Aktürk E, Ciraci S. Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79( 4): 041406
CrossRef
Google scholar
|
[91] |
Lee H, Ihm J, Cohen M L.
CrossRef
Google scholar
|
[92] |
Gao Y, Zhao N, Li J.
CrossRef
Google scholar
|
[93] |
Gambini M, Stilo T, Vellini M. Selection of metal hydrides for a thermal energy storage device to support low-temperature concentrating solar power plants. International Journal of Hydrogen Energy, 2020, 45( 53): 28404– 28425
CrossRef
Google scholar
|
[94] |
Mukherjee D, Höllerhage T, Leich V.
CrossRef
Google scholar
|
[95] |
Hosseinabadi N. The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications. International Journal of Hydrogen Energy, 2021, 46( 7): 5025– 5044
CrossRef
Google scholar
|
[96] |
Bruzzone G, Costa G, Ferretti M.
CrossRef
Google scholar
|
[97] |
Li D, Ouyang Y, Li J.
CrossRef
Google scholar
|
[98] |
Rahimi R, Solimannejad M. First-principles study of superior hydrogen storage performance of Li-decorated Be2N6 monolayer. International Journal of Hydrogen Energy, 2020, 45( 38): 19465– 19478
CrossRef
Google scholar
|
[99] |
Wang Y J, Xu L, Qiao L H.
CrossRef
Google scholar
|
[100] |
Castillo-Alvarado F L, Ortiz-Lopez J, Arellano J S.
CrossRef
Google scholar
|
[101] |
Ghosh S, Padmanabhan V. Beryllium-doped single-walled carbon nanotubes with Stone-Wales defects: a promising material to store hydrogen at room temperature. International Journal of Hydrogen Energy, 2017, 42( 38): 24237– 24246
CrossRef
Google scholar
|
[102] |
Beheshtian J, Ravaei I. Hydrogen storage by BeO nano-cage: a DFT study. Applied Surface Science, 2016, 368 : 76– 81
CrossRef
Google scholar
|
[103] |
Liu J, Li K, Cheng H.
CrossRef
Google scholar
|
[104] |
Molinas B, Pontarollo A, Scapin M.
CrossRef
Google scholar
|
[105] |
Mohammadshahi S S, Gould T, Gray E M.
CrossRef
Google scholar
|
[106] |
Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
CrossRef
Google scholar
|
[107] |
Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
CrossRef
Google scholar
|
[108] |
Chandra S, Sharma P, Muthukumar P.
CrossRef
Google scholar
|
[109] |
Oi T, Maki K, Sakaki Y. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger. Journal of Power Sources, 2004, 125( 1): 52– 61
CrossRef
Google scholar
|
[110] |
Afzal M, Mane R, Sharma P. Heat transfer techniques in metal hydride hydrogen storage: a review. International Journal of Hydrogen Energy, 2017, 42( 52): 30661– 30682
CrossRef
Google scholar
|
[111] |
Rodríguez Sánchez A, Klein H P, Groll M. Expanded graphite as heat transfer matrix in metal hydride beds. International Journal of Hydrogen Energy, 2003, 28( 5): 515– 527
CrossRef
Google scholar
|
[112] |
Ferekh S, Gwak G, Kyoung S.
CrossRef
Google scholar
|
[113] |
Eisapour A H, Naghizadeh A, Eisapour M.
CrossRef
Google scholar
|
[114] |
Urunkar R U, Patil S D. Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids. International Journal of Hydrogen Energy, 2021, 46( 37): 19486– 19497
CrossRef
Google scholar
|
[115] |
Afzal M, Sharma P. Design and computational analysis of a metal hydride hydrogen storage system with hexagonal honeycomb based heat transfer enhancements—part A. International Journal of Hydrogen Energy, 2021, 46( 24): 13116– 13130
CrossRef
Google scholar
|
[116] |
Melnichuk M, Silin N, Peretti H A. Optimized heat transfer fin design for a metal-hydride hydrogen storage container. International Journal of Hydrogen Energy, 2009, 34( 8): 3417– 3424
CrossRef
Google scholar
|
[117] |
Laurencelle F, Goyette J. Simulation of heat transfer in a metal hydride reactor with aluminium foam. International Journal of Hydrogen Energy, 2007, 32( 14): 2957– 2964
CrossRef
Google scholar
|
[118] |
Pohlmann C, Röntzsch L, Weißgärber T.
CrossRef
Google scholar
|
[119] |
Nguyen H Q, Shabani B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. International Journal of Hydrogen Energy, 2021, 46( 62): 31699– 31726
CrossRef
Google scholar
|
[120] |
Li F, Zhao J, Tian D.
CrossRef
Google scholar
|
[121] |
Qu H, Du J, Pu C.
CrossRef
Google scholar
|
[122] |
Zhang Y, Wei X, Gao J.
CrossRef
Google scholar
|
[123] |
Zheng W, Song W, Wu T.
CrossRef
Google scholar
|
[124] |
Liu S, Qiu G, Liu X.
CrossRef
Google scholar
|
[125] |
Dematteis E M, Dreistadt D M, Capurso G.
CrossRef
Google scholar
|
[126] |
Yang T, Wang P, Xia C.
CrossRef
Google scholar
|
[127] |
Nayebossadri S, Book D. Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression. Renewable Energy, 2019, 143 : 1010– 1021
CrossRef
Google scholar
|
[128] |
Sathe R Y, Bae H, Lee H.
CrossRef
Google scholar
|
[129] |
Feng B, Zhang J, Zhong Q.
CrossRef
Google scholar
|
[130] |
Peng B, Zhang H, Shao H.
CrossRef
Google scholar
|
[131] |
Wen T Z, Xie A Z, Li J L.
CrossRef
Google scholar
|
[132] |
Lebon A, Carrete J, Gallego L J.
CrossRef
Google scholar
|
[133] |
Grew K N, Brownlee Z B, Shukla K C.
CrossRef
Google scholar
|
[134] |
Wang L, Rawal A, Aguey-Zinsou K F. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chemical Engineering Science, 2019, 194 : 64– 70
CrossRef
Google scholar
|
[135] |
Liang L, Wang C, Ren M.
CrossRef
Google scholar
|
[136] |
Ianni E, Sofianos M V, Rowles M R.
CrossRef
Google scholar
|
[137] |
Urbanczyk R, Peinecke K, Felderhoff M.
CrossRef
Google scholar
|
[138] |
Huang Y, Shao H, Zhang Q.
CrossRef
Google scholar
|
[139] |
Montero J, Ek G, Sahlberg M.
CrossRef
Google scholar
|
[140] |
Edalati P, Floriano R, Mohammadi A.
CrossRef
Google scholar
|
[141] |
Tu B, Wang H, Wang Y.
CrossRef
Google scholar
|
[142] |
Kunce I, Polanski M, Bystrzycki J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). International Journal of Hydrogen Energy, 2014, 39( 18): 9904– 9910
CrossRef
Google scholar
|
[143] |
Liu P, Xie X, Xu L.
CrossRef
Google scholar
|
[144] |
Hu J, Shen H, Jiang M.
CrossRef
Google scholar
|
[145] |
Shen H, Zhang J, Hu J.
CrossRef
Google scholar
|
[146] |
Higuchi K, Yamamoto K, Kajioka H.
CrossRef
Google scholar
|
[147] |
Reddy G L N, Kumar S. Reversible hydrogen storage in vapour deposited Mg-5 at.% Pd powder composites. International Journal of Hydrogen Energy, 2014, 39( 9): 4421– 4426
CrossRef
Google scholar
|
[148] |
Han B, Yu S, Wang H.
CrossRef
Google scholar
|
[149] |
Liu S, Liu J, Liu X.
CrossRef
Google scholar
|
/
〈 | 〉 |