Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

PDF(22536 KB)
PDF(22536 KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (5) : 706-733. DOI: 10.1007/s11708-022-0833-9
REVIEW ARTICLE
REVIEW ARTICLE

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich

Author information +
History +

Abstract

Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

Graphical abstract

Keywords

composite solid electrolytes / active filler/framework / ion conduction path / interphase compatibility / multilayer design

Cite this article

Download citation ▾
Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO. Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich. Front. Energy, 2022, 16(5): 706‒733 https://doi.org/10.1007/s11708-022-0833-9

References

[1]
Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews. Materials, 2016, 1( 4): 16013
CrossRef Google scholar
[2]
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12( 3): 194– 206
CrossRef Google scholar
[3]
Albertus P, Babinec S, Litzelman S. . Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 2018, 3( 1): 16– 21
CrossRef Google scholar
[4]
Cheng X B, Zhang R, Zhao C Z. . Toward safe lithium metal anode in rechargeable batteries: a review. Chemical Reviews, 2017, 117( 15): 10403– 10473
CrossRef Google scholar
[5]
Evarts E C. Lithium batteries: to the limits of lithium. Nature, 2015, 526( 7575): S93– S95
CrossRef Google scholar
[6]
Yang C, Fu K, Zhang Y. . Protected lithium-metal anodes in batteries: from liquid to solid. Advanced Materials, 2017, 29( 36): 1701169
CrossRef Google scholar
[7]
Wang S H, Yue J, Dong W. . Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10( 1): 4930
CrossRef Google scholar
[8]
Wang Z, Wang Y, Zhang Z. . Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Advanced Functional Materials, 2020, 30( 30): 2002414
CrossRef Google scholar
[9]
Dornbusch D A, Hilton R, Lohman S D. . Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. Journal of the Electrochemical Society, 2015, 162( 3): A262– A268
CrossRef Google scholar
[10]
Palacín M R, De Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292
[11]
Fan P, Liu H, Marosz V. . High performance composite polymer electrolytes for lithium-ion batteries. Advanced Functional Materials, 2021, 31( 23): 2101380
CrossRef Google scholar
[12]
Samson A J, Hofstetter K, Bag S. . A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science, 2019, 12( 10): 2957– 2975
CrossRef Google scholar
[13]
Xu H, Cao G, Shen Y. . Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy & Environmental Materials, 2022, online
CrossRef Google scholar
[14]
Vinod Chandran C, Pristat S, Witt E. . Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2−x(PO4)3 (0.0 ≤ x ≤ 1.0). Journal of Physical Chemistry C, 2016, 120( 16): 8436– 8442
CrossRef Google scholar
[15]
Wang J, Wang M, Xiao J. . A microstructure engineered perovskite super anode with Li-storage life of exceeding 10000 cycles. Nano Energy, 2022, 94 : 106972
CrossRef Google scholar
[16]
Mauger A, Julien C M, Paolella A. . Building better batteries in the solid state: a review. Materials (Basel), 2019, 12( 23): 3892
CrossRef Google scholar
[17]
Yue L, Ma J, Zhang J. . All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5 : 139– 164
CrossRef Google scholar
[18]
Zhang Q, Liu K, Ding F. . Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017, 10( 12): 4139– 4174
CrossRef Google scholar
[19]
Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group? Energy & Environmental Science, 2020, 13(5): 1318–1325
[20]
Xu L, Li J, Shuai H. . Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67 : 524– 548
CrossRef Google scholar
[21]
Chen L, Li Y, Li S P. . PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46 : 176– 184
CrossRef Google scholar
[22]
Zheng J, Hu Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Applied Materials & Interfaces, 2018, 10( 4): 4113– 4120
CrossRef Google scholar
[23]
Huang Z, Tong R A, Zhang J. . Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. Journal of Power Sources, 2020, 451 : 227797
CrossRef Google scholar
[24]
Jiang T, He P, Liang Y. . All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chemical Engineering Journal, 2021, 421 : 129965
CrossRef Google scholar
[25]
Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 2005, 152( 2): A396– A404
CrossRef Google scholar
[26]
Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007, 46( 41): 7778– 7781
CrossRef Google scholar
[27]
Rettenwander D, Blaha P, Laskowski R. . DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet. Chemistry of Materials, 2014, 26( 8): 2617– 2623
CrossRef Google scholar
[28]
Buannic L, Orayech B, López Del Amo J M. . Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chemistry of Materials, 2017, 29( 4): 1769– 1778
CrossRef Google scholar
[29]
Zhao C Z, Zhang X Q, Cheng X B. . An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 42): 11069– 11074
CrossRef Google scholar
[30]
Zhang X, Liu T, Zhang S. . Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139( 39): 13779– 13785
CrossRef Google scholar
[31]
Li R, Wu D, Yu L. . Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Advanced Engineering Materials, 2019, 21( 7): 1900055
CrossRef Google scholar
[32]
Sun F, Xiang Y, Sun Q. . Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes. Advanced Functional Materials, 2021, 31( 31): 2102129
CrossRef Google scholar
[33]
Li Y, Wang H. Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries. Industrial & Engineering Chemistry Research, 2021, 60( 3): 1494– 1500
CrossRef Google scholar
[34]
Wang W, Yi E, Fici A J. . Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. Journal of Physical Chemistry C, 2017, 121( 5): 2563– 2573
CrossRef Google scholar
[35]
Ma F, Zhang Z, Yan W. . Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2019, 7( 5): 4675– 4683
CrossRef Google scholar
[36]
Jia M, Bi Z, Shi C. . Polydopamine coated lithium lanthanum titanate in bilayer membrane electrolytes for solid lithium batteries. ACS Applied Materials & Interfaces, 2020, 12( 41): 46231– 46238
CrossRef Google scholar
[37]
Xu H, Chien P H, Shi J. . High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116( 38): 18815– 18821
CrossRef Google scholar
[38]
Dai Z, Yu J, Liu J. . Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. Journal of Power Sources, 2020, 464 : 228182
CrossRef Google scholar
[39]
Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2–P2S5 system. Journal of the Electrochemical Society, 2001, 148( 7): A742– A746
CrossRef Google scholar
[40]
Deiseroth H J, Kong S T, Eckert H. . Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition, 2008, 47( 4): 755– 758
CrossRef Google scholar
[41]
Kamaya N, Homma K, Yamakawa Y. . A lithium superionic conductor. Nature Materials, 2011, 10( 9): 682– 686
CrossRef Google scholar
[42]
Kato Y, Hori S, Saito T. . High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016, 1( 4): 16030
CrossRef Google scholar
[43]
Nikodimos Y, Huang C J, Taklu B W. . Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy & Environmental Science, 2022, 15( 3): 991– 1033
CrossRef Google scholar
[44]
Li Y, Arnold W, Thapa A. . Stable and flexible sulfide composite electrolytes for high-performance solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12( 38): 42653– 42659
CrossRef Google scholar
[45]
Cong L, Li Y, Lu W. . Unlocking the poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state electrolytes for dendrite-free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. Journal of Power Sources, 2020, 446 : 227365
CrossRef Google scholar
[46]
Pan K, Zhang L, Qian W. . A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Advanced Materials, 2020, 32( 17): 2000399
CrossRef Google scholar
[47]
Matsuo M, Nakamori Y, Orimo S I. . Lithium superionic conduction in lithium borohydride accompanied by structural transition. Applied Physics Letters, 2007, 91( 22): 224103
CrossRef Google scholar
[48]
Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews. Materials, 2017, 2( 4): 16103
CrossRef Google scholar
[49]
Cuan J, Zhou Y, Zhou T. . Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Advanced Materials, 2019, 31( 1): 1803533
CrossRef Google scholar
[50]
Zhang X, Zhang T, Shao Y. . Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium-sulfur batteries. ACS Sustainable Chemistry & Engineering, 2021, 9( 15): 5396– 5404
CrossRef Google scholar
[51]
Bao K, Pang Y, Yang J. . Modulating composite polymer electrolyte by lithium closo-borohydride achieves highly stable solid-state battery at 25 °C. Science China Materials, 2022, 65( 1): 95– 104
CrossRef Google scholar
[52]
Hu C, Shen Y, Shen M. . Superionic conductors via bulk interfacial conduction. Journal of the American Chemical Society, 2020, 142( 42): 18035– 18041
CrossRef Google scholar
[53]
Fan R, Liu C, He K. . Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Applied Materials & Interfaces, 2020, 12( 6): 7222– 7231
CrossRef Google scholar
[54]
Yang T, Zheng J, Cheng Q. . Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Applied Materials & Interfaces, 2017, 9( 26): 21773– 21780
CrossRef Google scholar
[55]
Li B, Su Q, Yu L. . Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS Applied Materials & Interfaces, 2019, 11( 45): 42206– 42213
CrossRef Google scholar
[56]
Liu W, Lee S W, Lin D. . Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature Energy, 2017, 2( 5): 17035
CrossRef Google scholar
[57]
Song S, Wu Y, Tang W. . Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustainable Chemistry & Engineering, 2019, 7( 7): 7163– 7170
CrossRef Google scholar
[58]
Cheng J, Hou G, Chen Q. . Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal, 2022, 429 : 132343
CrossRef Google scholar
[59]
Bae J, Li Y, Zhang J. . A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angewandte Chemie International Edition, 2018, 57( 8): 2096– 2100
CrossRef Google scholar
[60]
Xu Z, Zhang H, Yang T. . Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2( 11): 100644
CrossRef Google scholar
[61]
Wang X, Zhai H, Qie B. . Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy, 2019, 60 : 205– 212
CrossRef Google scholar
[62]
Song S, Qin X, Ruan Y. . Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. Journal of Power Sources, 2020, 461 : 228146
CrossRef Google scholar
[63]
Zhang Y, He X, Chen Z. . Unsupervised discovery of solid-state lithium ion conductors. Nature Communications, 2019, 10( 1): 5260
CrossRef Google scholar
[64]
Zekoll S, Marriner-Edwards C, Hekselman A K O. . Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 2018, 11( 1): 185– 201
CrossRef Google scholar
[65]
Yang H, Tay K, Xu Y. . Nitrogen-doped lithium lanthanum titanate nanofiber-polymer composite electrolytes for all-solid-state lithium batteries. Journal of the Electrochemical Society, 2021, 168( 11): 110507
CrossRef Google scholar
[66]
Zhu P, Yan C, Dirican M. . Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 10): 4279– 4285
CrossRef Google scholar
[67]
Zhai H, Xu P, Ning M. . A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Letters, 2017, 17( 5): 3182– 3187
CrossRef Google scholar
[68]
Chen W P, Duan H, Shi J L. . Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. Journal of the American Chemical Society, 2021, 143( 15): 5717– 5726
CrossRef Google scholar
[69]
Huang Z, Pang W, Liang P. . A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7( 27): 16425– 16436
CrossRef Google scholar
[70]
Wang C, Yu R, Duan H. . Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Letters, 2022, 7( 1): 410– 416
CrossRef Google scholar
[71]
Ahmed S A, Pareek T, Dwivedi S. . Fast Li+ conduction in (PEO+LiClO4) incorporated LiSn2(PO4)3 polymer-in-ceramic solid electrolyte. In: AIP Conference Proceedings, 2020, 2265 : 030596
CrossRef Google scholar
[72]
Ahmed S A, Pareek T, Dwivedi S. . LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries. Journal of Solid State Electrochemistry, 2020, 24( 10): 2407– 2417
CrossRef Google scholar
[73]
Zhang K, Mu S, Liu W. . A flexible NASICON-type composite electrolyte for lithium-oxygen/air battery. Ionics, 2019, 25( 1): 25– 33
CrossRef Google scholar
[74]
Jiang Z, Wang S, Chen X. . Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Advanced Materials, 2020, 32( 6): 1906221
CrossRef Google scholar
[75]
Yu S, Xu Q, Lu X. . Single-ion-conducting “polymer-in-ceramic” hybrid electrolyte with an intertwined NASICON-type nanofiber skeleton. ACS Applied Materials & Interfaces, 2021, 13( 51): 61067– 61077
CrossRef Google scholar
[76]
Meziane R, Bonnet J P, Courty M. . Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochimica Acta, 2011, 57 : 14– 19
CrossRef Google scholar
[77]
Yan C, Zhu P, Jia H. . Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26 : 448– 456
CrossRef Google scholar
[78]
Guo S, Kou W, Wu W. . Thin laminar inorganic solid electrolyte with high ionic conductance towards high-performance all-solid-state lithium battery. Chemical Engineering Journal, 2022, 427 : 131948
CrossRef Google scholar
[79]
Bae J, Li Y, Zhao F. . Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15 : 46– 52
CrossRef Google scholar
[80]
Cai D, Wang D, Chen Y. . A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries. Chemical Engineering Journal, 2020, 394 : 124993
CrossRef Google scholar
[81]
Wang S, Li Q, Bai M. . A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries. Electrochimica Acta, 2020, 353 : 136604
CrossRef Google scholar
[82]
Wu J, Wu X, Wang W. . Dense PVDF-type polymer-in-ceramic electrolytes for solid state lithium batteries. RSC Advances, 2020, 10( 38): 22417– 22421
CrossRef Google scholar
[83]
Jiang T, He P, Wang G. . Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10( 12): 1903376
CrossRef Google scholar
[84]
Nkosi F P, Valvo M, Mindemark J. . Garnet-poly(ε-caprolactone-co-trimethylene carbonate) polymer-in-ceramic composite electrolyte for all-solid-state lithium-ion batteries. ACS Applied Energy Materials, 2021, 4( 3): 2531– 2542
CrossRef Google scholar
[85]
Wang Z, Zhang P, Jia Y. . Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. Journal of Alloys and Compounds, 2021, 853 : 157340
CrossRef Google scholar
[86]
Wang B, Wang G, He P. . Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. Journal of Membrane Science, 2022, 642 : 119952
CrossRef Google scholar
[87]
Zhang B, Liu Y, Liu J. . “Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries. Journal of Energy Chemistry, 2021, 52 : 318– 325
CrossRef Google scholar
[88]
Bonizzoni S, Ferrara C, Berbenni V. . NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Physical Chemistry Chemical Physics, 2019, 21( 11): 6142– 6149
CrossRef Google scholar
[89]
Menkin S, Lifshitz M, Haimovich A. . Evaluation of ion-transport in composite polymer-in-ceramic electrolytes. Case study of active and inert ceramics. Electrochimica Acta, 2019, 304 : 447– 455
CrossRef Google scholar
[90]
Jiang H, Wu Y, Ma J. . Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries. Journal of Membrane Science, 2021, 640 : 119840
CrossRef Google scholar
[91]
Zhang N, Wang G, Feng M. . In situ generation of a soft-tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2021, 9( 7): 4018– 4025
CrossRef Google scholar
[92]
Huo H, Chen Y, Luo J. . Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Advanced Energy Materials, 2019, 9( 17): 1804004
CrossRef Google scholar
[93]
Li B, Su Q, Liu C. . Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte. Journal of Power Sources, 2021, 496 : 229835
CrossRef Google scholar
[94]
Ling H, Shen L, Huang Y. . Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries. ACS Applied Materials & Interfaces, 2020, 12( 51): 56995– 57002
CrossRef Google scholar
[95]
Liu K, Zhang R, Sun J. . Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Applied Materials & Interfaces, 2019, 11( 50): 46930– 46937
CrossRef Google scholar
[96]
Li B, Su Q, Yu L. . Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries. Journal of Membrane Science, 2021, 618 : 118734
CrossRef Google scholar

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2021YFB2500100) and the National Natural Science Foundation of China (Grant Nos. 51872196 and 22109114).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(22536 KB)

Accesses

Citations

Detail

Sections
Recommended

/