Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich
Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO
Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich
Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.
composite solid electrolytes / active filler/framework / ion conduction path / interphase compatibility / multilayer design
[1] |
Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews. Materials, 2016, 1( 4): 16013
CrossRef
Google scholar
|
[2] |
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12( 3): 194– 206
CrossRef
Google scholar
|
[3] |
Albertus P, Babinec S, Litzelman S.
CrossRef
Google scholar
|
[4] |
Cheng X B, Zhang R, Zhao C Z.
CrossRef
Google scholar
|
[5] |
Evarts E C. Lithium batteries: to the limits of lithium. Nature, 2015, 526( 7575): S93– S95
CrossRef
Google scholar
|
[6] |
Yang C, Fu K, Zhang Y.
CrossRef
Google scholar
|
[7] |
Wang S H, Yue J, Dong W.
CrossRef
Google scholar
|
[8] |
Wang Z, Wang Y, Zhang Z.
CrossRef
Google scholar
|
[9] |
Dornbusch D A, Hilton R, Lohman S D.
CrossRef
Google scholar
|
[10] |
Palacín M R, De Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292
|
[11] |
Fan P, Liu H, Marosz V.
CrossRef
Google scholar
|
[12] |
Samson A J, Hofstetter K, Bag S.
CrossRef
Google scholar
|
[13] |
Xu H, Cao G, Shen Y.
CrossRef
Google scholar
|
[14] |
Vinod Chandran C, Pristat S, Witt E.
CrossRef
Google scholar
|
[15] |
Wang J, Wang M, Xiao J.
CrossRef
Google scholar
|
[16] |
Mauger A, Julien C M, Paolella A.
CrossRef
Google scholar
|
[17] |
Yue L, Ma J, Zhang J.
CrossRef
Google scholar
|
[18] |
Zhang Q, Liu K, Ding F.
CrossRef
Google scholar
|
[19] |
Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group? Energy & Environmental Science, 2020, 13(5): 1318–1325
|
[20] |
Xu L, Li J, Shuai H.
CrossRef
Google scholar
|
[21] |
Chen L, Li Y, Li S P.
CrossRef
Google scholar
|
[22] |
Zheng J, Hu Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Applied Materials & Interfaces, 2018, 10( 4): 4113– 4120
CrossRef
Google scholar
|
[23] |
Huang Z, Tong R A, Zhang J.
CrossRef
Google scholar
|
[24] |
Jiang T, He P, Liang Y.
CrossRef
Google scholar
|
[25] |
Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 2005, 152( 2): A396– A404
CrossRef
Google scholar
|
[26] |
Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007, 46( 41): 7778– 7781
CrossRef
Google scholar
|
[27] |
Rettenwander D, Blaha P, Laskowski R.
CrossRef
Google scholar
|
[28] |
Buannic L, Orayech B, López Del Amo J M.
CrossRef
Google scholar
|
[29] |
Zhao C Z, Zhang X Q, Cheng X B.
CrossRef
Google scholar
|
[30] |
Zhang X, Liu T, Zhang S.
CrossRef
Google scholar
|
[31] |
Li R, Wu D, Yu L.
CrossRef
Google scholar
|
[32] |
Sun F, Xiang Y, Sun Q.
CrossRef
Google scholar
|
[33] |
Li Y, Wang H. Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries. Industrial & Engineering Chemistry Research, 2021, 60( 3): 1494– 1500
CrossRef
Google scholar
|
[34] |
Wang W, Yi E, Fici A J.
CrossRef
Google scholar
|
[35] |
Ma F, Zhang Z, Yan W.
CrossRef
Google scholar
|
[36] |
Jia M, Bi Z, Shi C.
CrossRef
Google scholar
|
[37] |
Xu H, Chien P H, Shi J.
CrossRef
Google scholar
|
[38] |
Dai Z, Yu J, Liu J.
CrossRef
Google scholar
|
[39] |
Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2–P2S5 system. Journal of the Electrochemical Society, 2001, 148( 7): A742– A746
CrossRef
Google scholar
|
[40] |
Deiseroth H J, Kong S T, Eckert H.
CrossRef
Google scholar
|
[41] |
Kamaya N, Homma K, Yamakawa Y.
CrossRef
Google scholar
|
[42] |
Kato Y, Hori S, Saito T.
CrossRef
Google scholar
|
[43] |
Nikodimos Y, Huang C J, Taklu B W.
CrossRef
Google scholar
|
[44] |
Li Y, Arnold W, Thapa A.
CrossRef
Google scholar
|
[45] |
Cong L, Li Y, Lu W.
CrossRef
Google scholar
|
[46] |
Pan K, Zhang L, Qian W.
CrossRef
Google scholar
|
[47] |
Matsuo M, Nakamori Y, Orimo S I.
CrossRef
Google scholar
|
[48] |
Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews. Materials, 2017, 2( 4): 16103
CrossRef
Google scholar
|
[49] |
Cuan J, Zhou Y, Zhou T.
CrossRef
Google scholar
|
[50] |
Zhang X, Zhang T, Shao Y.
CrossRef
Google scholar
|
[51] |
Bao K, Pang Y, Yang J.
CrossRef
Google scholar
|
[52] |
Hu C, Shen Y, Shen M.
CrossRef
Google scholar
|
[53] |
Fan R, Liu C, He K.
CrossRef
Google scholar
|
[54] |
Yang T, Zheng J, Cheng Q.
CrossRef
Google scholar
|
[55] |
Li B, Su Q, Yu L.
CrossRef
Google scholar
|
[56] |
Liu W, Lee S W, Lin D.
CrossRef
Google scholar
|
[57] |
Song S, Wu Y, Tang W.
CrossRef
Google scholar
|
[58] |
Cheng J, Hou G, Chen Q.
CrossRef
Google scholar
|
[59] |
Bae J, Li Y, Zhang J.
CrossRef
Google scholar
|
[60] |
Xu Z, Zhang H, Yang T.
CrossRef
Google scholar
|
[61] |
Wang X, Zhai H, Qie B.
CrossRef
Google scholar
|
[62] |
Song S, Qin X, Ruan Y.
CrossRef
Google scholar
|
[63] |
Zhang Y, He X, Chen Z.
CrossRef
Google scholar
|
[64] |
Zekoll S, Marriner-Edwards C, Hekselman A K O.
CrossRef
Google scholar
|
[65] |
Yang H, Tay K, Xu Y.
CrossRef
Google scholar
|
[66] |
Zhu P, Yan C, Dirican M.
CrossRef
Google scholar
|
[67] |
Zhai H, Xu P, Ning M.
CrossRef
Google scholar
|
[68] |
Chen W P, Duan H, Shi J L.
CrossRef
Google scholar
|
[69] |
Huang Z, Pang W, Liang P.
CrossRef
Google scholar
|
[70] |
Wang C, Yu R, Duan H.
CrossRef
Google scholar
|
[71] |
Ahmed S A, Pareek T, Dwivedi S.
CrossRef
Google scholar
|
[72] |
Ahmed S A, Pareek T, Dwivedi S.
CrossRef
Google scholar
|
[73] |
Zhang K, Mu S, Liu W.
CrossRef
Google scholar
|
[74] |
Jiang Z, Wang S, Chen X.
CrossRef
Google scholar
|
[75] |
Yu S, Xu Q, Lu X.
CrossRef
Google scholar
|
[76] |
Meziane R, Bonnet J P, Courty M.
CrossRef
Google scholar
|
[77] |
Yan C, Zhu P, Jia H.
CrossRef
Google scholar
|
[78] |
Guo S, Kou W, Wu W.
CrossRef
Google scholar
|
[79] |
Bae J, Li Y, Zhao F.
CrossRef
Google scholar
|
[80] |
Cai D, Wang D, Chen Y.
CrossRef
Google scholar
|
[81] |
Wang S, Li Q, Bai M.
CrossRef
Google scholar
|
[82] |
Wu J, Wu X, Wang W.
CrossRef
Google scholar
|
[83] |
Jiang T, He P, Wang G.
CrossRef
Google scholar
|
[84] |
Nkosi F P, Valvo M, Mindemark J.
CrossRef
Google scholar
|
[85] |
Wang Z, Zhang P, Jia Y.
CrossRef
Google scholar
|
[86] |
Wang B, Wang G, He P.
CrossRef
Google scholar
|
[87] |
Zhang B, Liu Y, Liu J.
CrossRef
Google scholar
|
[88] |
Bonizzoni S, Ferrara C, Berbenni V.
CrossRef
Google scholar
|
[89] |
Menkin S, Lifshitz M, Haimovich A.
CrossRef
Google scholar
|
[90] |
Jiang H, Wu Y, Ma J.
CrossRef
Google scholar
|
[91] |
Zhang N, Wang G, Feng M.
CrossRef
Google scholar
|
[92] |
Huo H, Chen Y, Luo J.
CrossRef
Google scholar
|
[93] |
Li B, Su Q, Liu C.
CrossRef
Google scholar
|
[94] |
Ling H, Shen L, Huang Y.
CrossRef
Google scholar
|
[95] |
Liu K, Zhang R, Sun J.
CrossRef
Google scholar
|
[96] |
Li B, Su Q, Yu L.
CrossRef
Google scholar
|
/
〈 | 〉 |