Emerging roles of liquid metals in carbon neutrality

Yueguang DENG, Jing LI, Ertai E

PDF(669 KB)
PDF(669 KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (3) : 393-396. DOI: 10.1007/s11708-022-0829-5
VIEWPOINT
VIEWPOINT

Emerging roles of liquid metals in carbon neutrality

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Yueguang DENG, Jing LI, Ertai E. Emerging roles of liquid metals in carbon neutrality. Front. Energy, 2022, 16(3): 393‒396 https://doi.org/10.1007/s11708-022-0829-5

References

[1]
International Energy Agency. An energy sector roadmap to carbon neutrality in China. 2021− 9−15, available at website of iea gov
[2]
Liu Z, Deng Z, He G. . Challenges and opportunities for carbon neutrality in China. Nature Reviews. Earth & Environment, 2022, 3( 2): 141– 155
CrossRef Google scholar
[3]
Deng Y G Liu J. Liquid Metals for Advanced Energy Applications. New York: AIP Publishing, 2022
[4]
Chen S, Wang H, Zhao R. . Liquid metal composites. Matter, 2020, 2( 6): 1446– 1480
CrossRef Google scholar
[5]
Liu J. Advanced Liquid Metal Cooling for Chip, Device and System. Shanghai: Shanghai Scientific & Technical Publishers, 2020
[6]
Liu J Wang L. Principle and Application of Liquid Metal 3D Printing Technology. Shanghai: Shanghai Scientific & Technical Publishers, 2019
[7]
Cao L X, Yin T, Jin M X. . Flexible circulated-cooling liquid metal coil for induction heating. Applied Thermal Engineering, 2019, 162 : 114260
CrossRef Google scholar
[8]
Guo S, Wang P, Zhang J. . Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging. Frontiers in Energy, 2019, 13( 3): 474– 482
CrossRef Google scholar
[9]
Liu C He Z. High heat flux thermal management through liquid metal driven with electromagnetic induction pump. Frontiers in Energy, 2022, online, http://doi.org/10.1007/s11708-022-0825-9
[10]
Sun P Zhang H Jiang F C. Self-driven liquid metal cooling connector for direct current high power charging to electric vehicle. eTransportation 2021, 10: 100132
[11]
West D, Taylor J A, Krupenkin T. Alternating current liquid metal vortex magnetohydrodynamic generator. Energy Conversion and Management, 2020, 223 : 113223
CrossRef Google scholar
[12]
Deng Y G, Jiang Y, Liu J. Low-melting-point liquid metal convective heat transfer: a review. Applied Thermal Engineering, 2021, 193 : 117021
CrossRef Google scholar
[13]
Deng Y G Liu J Zhou Y X. Study on liquid metal cooling of photovoltaic cell. In: Inaugural US-EU-China Thermophysics Conference-Renewable Energy, Beijing, China, 2009
[14]
Yang X H, Liu J. Advances in liquid metal science and technology in chip cooling and thermal management. In: Sparrow E M, Abraham J P, Gorman J M, eds. Advances in Heat Transfer, 2018, 50 : 187– 300
CrossRef Google scholar
[15]
Zhang X D, Yang X H, Zhou Y X. . Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. Energy Conversion and Management, 2019, 185 : 248– 258
CrossRef Google scholar
[16]
Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation–basics and applications. Solar Energy Materials and Solar Cells, 2021, 222 : 110925
CrossRef Google scholar
[17]
Kim H, Boysen D A, Newhouse J M. . Liquid metal batteries: past, present, and future. Chemical Reviews, 2013, 113( 3): 2075– 2099
CrossRef Google scholar
[18]
Ouchi T, Kim H, Spatocco B L. . Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nature Communications, 2016, 7( 1): 10999
CrossRef Google scholar
[19]
Wang K L, Jiang K, Chung B. . Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature, 2014, 514( 7522): 348– 350
CrossRef Google scholar
[20]
Li H M, Wang K L, Cheng S J. . High performance liquid metal battery with environmentally friendly antimony-tin positive electrode. ACS Applied Materials & Interfaces, 2016, 8( 20): 12830– 12835
CrossRef Google scholar
[21]
Liu J Wang Q. Liquid Metal Printed Electronics. Shanghai: Shanghai Scientific & Technical Publishers, 2019
[22]
Xu S, Liu J. Metal-based direct hydrogen generation as unconventional high density energy. Frontiers in Energy, 2019, 13( 1): 27– 53
CrossRef Google scholar
[23]
Xu S, Zhao X, Liu J. Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renewable & Sustainable Energy Reviews, 2018, 92 : 17– 37
CrossRef Google scholar
[24]
Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. Nanotechnology, 2021, 32( 9): 092001
CrossRef Google scholar
[25]
Esrafilzadeh D, Zavabeti A, Jalili R. . Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10( 1): 865
CrossRef Google scholar
[26]
Xing Z, Fu J, Chen S. . Perspective on gallium-based room temperature liquid metal batteries. Frontiers in Energy, 2022, 16( 1): 23– 48
CrossRef Google scholar
[27]
Ding Y, Guo X L, Qian Y M. . Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting. Advanced Materials, 2020, 32( 30): 2002577
CrossRef Google scholar

Acknowledgments

This work was partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(669 KB)

Accesses

Citations

Detail

Sections
Recommended

/