Emerging roles of liquid metals in carbon neutrality
Yueguang DENG, Jing LI, Ertai E
Emerging roles of liquid metals in carbon neutrality
[1] |
International Energy Agency. An energy sector roadmap to carbon neutrality in China. 2021− 9−15, available at website of iea gov
|
[2] |
Liu Z, Deng Z, He G.
CrossRef
Google scholar
|
[3] |
Deng Y G Liu J. Liquid Metals for Advanced Energy Applications. New York: AIP Publishing, 2022
|
[4] |
Chen S, Wang H, Zhao R.
CrossRef
Google scholar
|
[5] |
Liu J. Advanced Liquid Metal Cooling for Chip, Device and System. Shanghai: Shanghai Scientific & Technical Publishers, 2020
|
[6] |
Liu J Wang L. Principle and Application of Liquid Metal 3D Printing Technology. Shanghai: Shanghai Scientific & Technical Publishers, 2019
|
[7] |
Cao L X, Yin T, Jin M X.
CrossRef
Google scholar
|
[8] |
Guo S, Wang P, Zhang J.
CrossRef
Google scholar
|
[9] |
Liu C He Z. High heat flux thermal management through liquid metal driven with electromagnetic induction pump. Frontiers in Energy, 2022, online,
|
[10] |
Sun P Zhang H Jiang F C. Self-driven liquid metal cooling connector for direct current high power charging to electric vehicle. eTransportation 2021, 10: 100132
|
[11] |
West D, Taylor J A, Krupenkin T. Alternating current liquid metal vortex magnetohydrodynamic generator. Energy Conversion and Management, 2020, 223 : 113223
CrossRef
Google scholar
|
[12] |
Deng Y G, Jiang Y, Liu J. Low-melting-point liquid metal convective heat transfer: a review. Applied Thermal Engineering, 2021, 193 : 117021
CrossRef
Google scholar
|
[13] |
Deng Y G Liu J Zhou Y X. Study on liquid metal cooling of photovoltaic cell. In: Inaugural US-EU-China Thermophysics Conference-Renewable Energy, Beijing, China, 2009
|
[14] |
Yang X H, Liu J. Advances in liquid metal science and technology in chip cooling and thermal management. In: Sparrow E M, Abraham J P, Gorman J M, eds. Advances in Heat Transfer, 2018, 50 : 187– 300
CrossRef
Google scholar
|
[15] |
Zhang X D, Yang X H, Zhou Y X.
CrossRef
Google scholar
|
[16] |
Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation–basics and applications. Solar Energy Materials and Solar Cells, 2021, 222 : 110925
CrossRef
Google scholar
|
[17] |
Kim H, Boysen D A, Newhouse J M.
CrossRef
Google scholar
|
[18] |
Ouchi T, Kim H, Spatocco B L.
CrossRef
Google scholar
|
[19] |
Wang K L, Jiang K, Chung B.
CrossRef
Google scholar
|
[20] |
Li H M, Wang K L, Cheng S J.
CrossRef
Google scholar
|
[21] |
Liu J Wang Q. Liquid Metal Printed Electronics. Shanghai: Shanghai Scientific & Technical Publishers, 2019
|
[22] |
Xu S, Liu J. Metal-based direct hydrogen generation as unconventional high density energy. Frontiers in Energy, 2019, 13( 1): 27– 53
CrossRef
Google scholar
|
[23] |
Xu S, Zhao X, Liu J. Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renewable & Sustainable Energy Reviews, 2018, 92 : 17– 37
CrossRef
Google scholar
|
[24] |
Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. Nanotechnology, 2021, 32( 9): 092001
CrossRef
Google scholar
|
[25] |
Esrafilzadeh D, Zavabeti A, Jalili R.
CrossRef
Google scholar
|
[26] |
Xing Z, Fu J, Chen S.
CrossRef
Google scholar
|
[27] |
Ding Y, Guo X L, Qian Y M.
CrossRef
Google scholar
|
/
〈 | 〉 |