A review on high performance photovoltaic cells and strategies for improving their efficiency

Muni Raj MAURYA , John-John CABIBIHAN , Kishor Kumar SADASIVUNI , Kalim DESHMUKH

Front. Energy ›› 2022, Vol. 16 ›› Issue (4) : 548 -580.

PDF (12722KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (4) : 548 -580. DOI: 10.1007/s11708-022-0826-8
REVIEW ARTICLE
REVIEW ARTICLE

A review on high performance photovoltaic cells and strategies for improving their efficiency

Author information +
History +
PDF (12722KB)

Abstract

The introduction of a practical solar cell by Bell Laboratory, which had an efficiency of approximately 6%, signified photovoltaic technology as a potentially viable energy source. Continuous efforts have been made to increase power conversion efficiency (PCE). In the present review, the advances made in solar cells (SCs) are summarized. Material and device engineering are described for achieving enhanced light absorption, electrical properties, stability and higher PCE in SCs. The strategies in materials and coating techniques for large area deposition are further elaborated, which is expected to be helpful for realizing high-efficiency SCs. The methods of light-harvesting in SCs via anti-reflecting coatings, surface texturing, patterned growth of nanostructure, and plasmonics are discussed. Moreover, progress in mechanical methods that are used for sun tracking are elaborated. The assistance of the above two protocols in maximizing the power output of SCs are discussed in detail. Finally, further research efforts needed to overcome roadblocks in commercialization were highlighted and perspectives on the future development of this rapidly advancing field are offered.

Graphical abstract

Keywords

photovoltaic / efficiency / large area deposition / light harvesting / sun tracker

Cite this article

Download citation ▾
Muni Raj MAURYA, John-John CABIBIHAN, Kishor Kumar SADASIVUNI, Kalim DESHMUKH. A review on high performance photovoltaic cells and strategies for improving their efficiency. Front. Energy, 2022, 16(4): 548-580 DOI:10.1007/s11708-022-0826-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rapier R. Fossil fuels still supply 84 percent of world energy—and other eye openers from BP’s annual review. 2020, available at the website of forbes.com

[2]

Shaikh J S, Shaikh N S, Sheikh A D. . Perovskite solar cells: in pursuit of efficiency and stability. Materials & Design, 2017, 136 : 54– 80

[3]

Becquerel M E. On electrod effect under the influence of solar radiation. Proceedings of the Academy of Science, 1839, 9: 561− 567 (in French)

[4]

Xu T, Yu L. How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17( 1): 11– 15

[5]

Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32( 3): 510– 519

[6]

Sze S Ng K K. Physics of Semiconductor Devices. Wiley Online Books, 2006

[7]

Singh P, Ravindra N M. Temperature dependence of solar cell performance—an analysis. Solar Energy Materials and Solar Cells, 2012, 101 : 36– 45

[8]

Qi B, Wang J. Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15( 23): 8972

[9]

Guo X, Zhou N, Lou S J. . Polymer solar cells with enhanced fill factors. Nature Photonics, 2013, 7( 10): 825– 833

[10]

You J, Dou L, Hong Z. . Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38( 12): 1909– 1928

[11]

You J, Chen C, Hong Z. . 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Advanced Materials, 2013, 25( 29): 3973– 3978

[12]

Fan X, Guo S, Fang G. . An efficient PDPPTPT: PC61BM-based tandem polymer solar cells with a Ca/Ag/MoO3 intermediate layer. Solar Energy Materials and Solar Cells, 2013, 113 : 135– 139

[13]

Zhao D, Tang W, Ke L. . Efficient bulk heterojunction solar cells with poly[2, 7-(9, 9-dihexylfluorene)-alt-bithiophene]and 6, 6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. ACS Applied Materials & Interfaces, 2010, 2( 3): 829– 837

[14]

Guo Z, Lee D, Schaller R D. . Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends. Journal of the American Chemical Society, 2014, 136( 28): 10024– 10032

[15]

Kim J, Yun M H, Kim G H. . Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control. ACS Applied Materials & Interfaces, 2014, 6( 10): 7523– 7534

[16]

Chen H Y, Lin S, Sun J Y. . Morphologic improvement of the PBDTTT-C and PC71BM blend film with mixed solvent for high-performance inverted polymer solar cells. Nanotechnology, 2013, 24( 48): 484009

[17]

An T K, Kang I, Yun H. . Solvent additive to achieve highly ordered nanostructural semicrystalline DPP copolymers: toward a high charge carrier mobility. Advanced Materials, 2013, 25( 48): 7003– 7009

[18]

Guan Z, Yu J, Huang J. . Power efficiency enhancement of solution-processed small-molecule solar cells based on squaraine via thermal annealing and solvent additive methods. Solar Energy Materials and Solar Cells, 2013, 109 : 262– 269

[19]

Tan M J, Zhong S, Li J. . Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. ACS Applied Materials & Interfaces, 2013, 5( 11): 4696– 4701

[20]

Elumalai N K, Vijila C, Jose R. . Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering. Physical Chemistry Chemical Physics, 2013, 15( 43): 19057

[21]

Tan Z, Li S, Wang F. . High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2015, 4( 1): 4691

[22]

Lu L, Yu L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Advanced Materials, 2014, 26( 26): 4413– 4430

[23]

Wysocki J J, Rappaport P. Effect of temperature on photovoltaic solar energy conversion. Journal of Applied Physics, 1960, 31( 3): 571– 578

[24]

Fan J C C. Theoretical temperature dependence of solar cell parameters. Solar Cells, 1986, 17( 2−3): 309– 315

[25]

Singh P, Singh S N, Lal M. . Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells, 2008, 92( 12): 1611– 1616

[26]

Goetzberger A, Hebling C. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 2000, 62( 1−2): 1– 19

[27]

Hosenuzzaman M, Rahim N A, Selvaraj J. . Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable & Sustainable Energy Reviews, 2015, 41 : 284– 297

[28]

Subtil Lacerda J, van den Bergh J C J M. Diversity in solar photovoltaic energy: implications for innovation and policy. Renewable & Sustainable Energy Reviews, 2016, 54 : 331– 340

[29]

Yoshikawa K, Kawasaki H, Yoshida W. . Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017, 2( 5): 17032

[30]

Peng J, Lu L, Yang H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable & Sustainable Energy Reviews, 2013, 19 : 255– 274

[31]

Tyagi V V, Rahim N A A, Rahim N A. . Progress in solar PV technology: research and achievement. Renewable & Sustainable Energy Reviews, 2013, 20 : 443– 461

[32]

Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering R Reports, 2003, 40( 1): 1– 46

[33]

Miles R W, Hynes K M, Forbes I. Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials, 2005, 51( 1−3): 1– 42

[34]

El Chaar L, lamont L A, El Zein N. Review of photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15( 5): 2165– 2175

[35]

Avrutin V, Izyumskaya N, Morkoç H. Semiconductor solar cells: recent progress in terrestrial applications. Superlattices and Microstructures, 2011, 49( 4): 337– 364

[36]

Green M A, Dunlop E D, Hohl-Ebinger J. . Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28( 1): 3– 15

[37]

Braga A F B, Moreira S P, Zampieri P R. . New processes for the production of solar-grade polycrystalline silicon: a review. Solar Energy Materials and Solar Cells, 2008, 92( 4): 418– 424

[38]

Bruton T M. General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 2002, 72( 1-4): 3– 10

[39]

van der Zwaan B, Rabl A. Prospects for PV: a learning curve analysis. Solar Energy, 2003, 74( 1): 19– 31

[40]

Keogh W M, Blakers A W. Accurate measurement, using natural sunlight, of silicon solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12( 1): 1– 19

[41]

Hanoka J I. An overview of silicon ribbon growth technology. Solar Energy Materials and Solar Cells, 2001, 65( 1−4): 231– 237

[42]

Peng K, Lee S T. Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials, 2011, 23( 2): 198– 215

[43]

Gangopadhyay U, Jana S, Das S. State of art of solar photovoltaic technology. Conference Papers in Energy, 2013, 2013 : 764132

[44]

Mundo-Hernández J, de Celis Alonso B, Hernández-Álvarez J. . An overview of solar photovoltaic energy in Mexico and Germany. Renewable & Sustainable Energy Reviews, 2014, 31 : 639– 649

[45]

Boutchich M, Alvarez J, Diouf D. . Amorphous silicon diamond based heterojunctions with high rectification ratio. Journal of Non-Crystalline Solids, 2012, 358( 17): 2110– 2113

[46]

Subhan F E, Khan A D, Hilal F E. . Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings. RSC Advances, 2020, 10( 20): 11836– 11842

[47]

Matsui T, Bidiville A, Maejima K. . High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability. Applied Physics Letters, 2015, 106( 5): 053901

[48]

Sai H, Matsui T, Kumagai H. . Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 2018, 11( 2): 022301

[49]

Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993, 62( 22): 2851– 2852

[50]

Cdte C, Solar P, Wu X. . 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell. Renewable Energy, 2001, 22– 26

[51]

Aberle A G. Thin-film solar cells. Thin Solid Films, 2009, 517( 17): 4706– 4710

[52]

Powalla M, Bonnet D. Thin-film solar cells based on the polycrystalline compound semiconductors CIS and CdTe. Advances in OptoElectronics, 2007, 2007 : 097545

[53]

Wang D, Yang R, Wu L. . Band alignment of CdTe with MoOx oxide and fabrication of high efficiency CdTe solar cells. Solar Energy, 2018, 162 : 637– 645

[54]

Kazmerski L L, White F R, Morgan G K. Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters, 1976, 29( 4): 268– 270

[55]

Mickelsen R A, Chen W S. Development of a 9.4% efficiency thin-film CulnSe2/CdS solar cell. In: Proceeding of Photovoltaic Specialists Conference, Institute of Electronics Engineers, 1981, 800– 804

[56]

Wang Y C, Shieh H P D. Double-graded bandgap in Cu(In, Ga)Se2 thin film solar cells by low toxicity selenization process. Applied Physics Letters, 2014, 105( 7): 073901

[57]

Cui X, Yun D, Zhong C. . A facile route for synthesis of CuInxGa1−xSe2 nanocrystals with tunable composition for photovoltaic application. Journal of Sol-Gel Science and Technology, 2015, 76( 3): 469– 475

[58]

Reinhard P, Pianezzi F, Bissig B. . Cu(In, Ga)Se2 thin-film solar cells and modules—a boost in efficiency due to potassium. IEEE International Journal of Photovoltaics, 2015, 5( 2): 656– 663

[59]

Fischer J, Larsen J K, Guillot J. . Composition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks. Solar Energy Materials and Solar Cells, 2014, 126 : 88– 95

[60]

Rampino S, Armani N, Bissoli F. . 15% efficient Cu(In, Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition. Applied Physics Letters, 2012, 101( 13): 132107

[61]

Nakada T. Invited Paper: CIGS-based thin film solar cells and modules: unique material properties. Electronic Materials Letters, 2012, 8( 2): 179– 185

[62]

Kapur V Kemmerle R Bansal A. Manufacturing of ‘ink based’ CIGS solar cells/modules. In: 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 2008

[63]

Romeo A, Terheggen M, Abou-Ras D. . Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12( 23): 93– 111

[64]

Ramanathan K, Contreras M A, Perkins C L. . Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11( 4): 225– 230

[65]

Guillemoles J F. The puzzle of Cu(In, Ga)Se2 (CIGS) solar cells stability . Thin Solid Films, 2002, 403− 404: 403− 404

[66]

Dhere N G. Present status and future prospects of CIGSS thin film solar cells. Solar Energy Materials and Solar Cells, 2006, 90( 15): 2181– 2190

[67]

Rau U, Schock H W. Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics. A, Materials Science & Processing, 1999, 69( 2): 131– 147

[68]

Hanna G, Jasenek A, Rau U. . Influence of the Ga-content on the bulk defect densities of Cu(In, Ga)Se2. Thin Solid Films, 2001, 387( 1−2): 71– 73

[69]

Singh U P, Patra S P. Progress in polycrystalline thin-film Cu(In, Ga). International Journal of Photoenergy, 2010, 2010 : 468147

[70]

Hiroi H, Iwata Y, Adachi S. . New world-record efficiency for pure-sulfide Cu(In, Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE International Journal of Photovoltaics, 2016, 6( 3): 760– 763

[71]

Nakamura M Kouji Y Chiba Y. Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer . In: 2013 IEEE 39th Photovoltaic Specialists Conference. Tampa, FL, USA, 2013

[72]

Kobayashi T, Yamaguchi H, Nakada T. Effects of combined heat and light soaking on device performance of Cu(In, Ga)Se2solar cells with ZnS(O, OH) buffer layer. Progress in Photovoltaics: Research and Applications, 2014, 22( 1): 115– 121

[73]

Kamada R Yagioka T Adachi S. New world record Cu(In, Ga)(Se, S)2 thin film solar cell efficiency beyond 22% . In: 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016

[74]

Nakamura M, Yamaguchi K, Kimoto Y. . Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE International Journal of Photovoltaics, 2019, 9( 6): 1863– 1867

[75]

Yin W, Yang J, Kang J. . Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 17): 8926– 8942

[76]

Ramanujam J, Singh U P. Copper indium gallium selenide based solar cells—a review. Energy & Environmental Science, 2017, 10( 6): 1306– 1319

[77]

Li G, Shrotriya V, Huang J. . High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4( 11): 864– 868

[78]

Liang Y, Wu Y, Feng D. . Development of new semiconducting polymers for high performance solar cells. Journal of the American Chemical Society, 2009, 131( 1): 56– 57

[79]

Huo L, Zhang S, Guo X. . Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angewandte Chemie International Edition, 2011, 50( 41): 9697– 9702

[80]

Liao S H, Jhuo H J, Yeh P N. . Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Scientific Reports, 2015, 4( 1): 6813

[81]

Zhao J, Li Y, Yang G. . Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1( 2): 15027

[82]

Bin H, Gao L, Zhang Z. . 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7( 1): 13651

[83]

Fei Z, Eisner F D, Jiao X. . An alkylated indacenodithieno[3, 2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Advanced Materials, 2018, 30( 8): 1705209

[84]

Zhang S, Qin Y, Zhu J. . Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Advanced Materials, 2018, 30( 20): 1800868

[85]

Cui Y, Yao H, Yang C. . Organic solar cells with an efficiency approaching 15%. Acta Polymerica Sinica, 2018, 1( 2): 223– 230

[86]

Meng L, Zhang Y, Wan X. . Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361( 6407): 1094– 1098

[87]

Xue R, Zhang J, Li Y. . Organic solar cell materials toward commercialization. Small, 2018, 14( 41): 1801793

[88]

di Carlo Rasi D, Janssen R A J. Advances in solution-processed multijunction organic solar cells. Advanced Materials, 2019, 31( 10): 1806499

[89]

Zhang C, Wang G, Han H. . Self-assembled thin-layer glycomaterials with a proper shell thickness for targeted and activatable cell imaging. Frontiers in Chemistry, 2019, 7 : 294

[90]

Chen W, Zhang Q. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5( 6): 1275– 1302

[91]

Chen W, Yang X, Long G. . A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3( 18): 4698– 4705

[92]

Sun H, Song X, Xie J. . PDI derivative through fine-tuning the molecular structure for fullerene-free organic solar cells. ACS Applied Materials & Interfaces, 2017, 9( 35): 29924– 29931

[93]

Li C, Zhou J, Song J. . Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6( 6): 605– 613

[94]

O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353( 6346): 737– 740

[95]

Yeoh M E, Chan K Y. Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research, 2017, 41( 15): 2446– 2467

[96]

Mehmood U, Rahman S U, Harrabi K. . Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014, 2014 : 974782

[97]

Carella A, Borbone F, Centore R. Research progress on photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6 : 481

[98]

Richhariya G, Kumar A, Tekasakul P. . Natural dyes for dye sensitized solar cell: a review. Renewable & Sustainable Energy Reviews, 2017, 69 : 705– 718

[99]

Wu J, Lan Z, Lin J. . Electrolytes in dye-sensitized solar cells. Chemical Reviews, 2015, 115( 5): 2136– 2173

[100]

Iftikhar H, Sonai G G, Hashmi S G. . Progress on electrolytes development in dye-sensitized solar cells. Materials (Basel), 2019, 12( 12): 1998

[101]

Zhao Y L, Yao D S, Song C B. . CNT–G–TiO2 layer as a bridge linking TiO2 nanotube arrays and substrates for efficient dye-sensitized solar cells. RSC Advances, 2015, 5( 54): 43805– 43809

[102]

Qiu Y, Chen W, Yang S. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angewandte Chemie International Edition, 2010, 49( 21): 3675– 3679

[103]

Maheswari D, Venkatachalam P. Fabrication of high efficiency dye-sensitised solar cell with zirconia-doped TiO2 nanoparticle and nanowire composite photoanode film. Australian Journal of Chemistry, 2015, 68( 6): 881

[104]

Huang Y, Wu H, Yu Q. . Single-layer TiO2 film composed of mesoporous spheres for high-efficiency and stable dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering, 2018, 6( 3): 3411– 3418

[105]

Yella A, Lee H W, Tsao H N. . Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334( 6056): 629– 634

[106]

Kyaw A K K, Tantang H, Wu T. . Dye-sensitized solar cell with a pair of carbon-based electrodes. Journal of Physics. D, Applied Physics, 2012, 45( 16): 165103

[107]

Kyaw A K K, Tantang H, Wu T. . Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Applied Physics Letters, 2011, 99( 2): 021107

[108]

Tantang H, Kyaw A K K, Zhao Y. . Nitrogen-doped carbon nanotube-based bilayer thin film as transparent counter electrode for dye-sensitized solar cells (DSSCs). Chemistry, an Asian Journal, 2012, 7( 3): 541– 545

[109]

Liu X, Yang Z, Chueh C C. . Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 46): 17939– 17945

[110]

Saliba M, Matsui T, Domanski K. . Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354( 6309): 206– 209

[111]

Kojima A, Teshima K, Shirai Y. . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051

[112]

Jeong M, Choi I W, Go E M. . Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369( 6511): 1615– 1620

[113]

Heo J H, Han H J, Kim D. . Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8( 5): 1602– 1608

[114]

Mali S S, Kim H, Kim H H. . Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Materials Today, 2018, 21( 5): 483– 500

[115]

Chan S H, Wu M C, Lee K. . Enhancing perovskite solar cell performance and stability by doping Barium in methylammonium lead halide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 34): 18044– 18052

[116]

Wu M C, Chan S H, Lee K. . Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO2 as the electron extraction layer through band alignment. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 35): 16920– 16931

[117]

Chan S H, Chang Y H, Wu M C. High-performance perovskite solar cells based on low-temperature processed electron extraction layer. Frontiers in Materials, 2019, 6 : 57

[118]

Dubey A, Adhikari N, Mabrouk S. . A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 6): 2406– 2431

[119]

Noh J H, Im S H, Heo J H. . Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013, 13( 4): 1764– 1769

[120]

Im J H, Lee C R, Lee J W. . 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3( 10): 4088

[121]

Kim H S, Lee C R, Im J H. . Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2( 1): 591

[122]

Lee M M, Teuscher J, Miyasaka T. . Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338( 6107): 643– 647

[123]

Wang J T W, Ball J M, Barea E M. . Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 2014, 14( 2): 724– 730

[124]

Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8( 2): 133– 138

[125]

Klug M T, Osherov A, Haghighirad A A. . Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy & Environmental Science, 2017, 10( 1): 236– 246

[126]

Abdelhady A L, Saidaminov M I, Murali B. . Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. Journal of Physical Chemistry Letters, 2016, 7( 2): 295– 301

[127]

Wang Z, Li M, Yang Y. . High efficiency Pb-in binary metal perovskite solar cells. Advanced Materials, 2016, 28( 31): 6695– 6703

[128]

Chang J, Lin Z, Zhu H. . Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 42): 16546– 16552

[129]

Wang J T W, Wang Z, Pathak S. . Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 2016, 9( 9): 2892– 2901

[130]

van der Stam W, Geuchies J J, Altantzis T. . Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. Journal of the American Chemical Society, 2017, 139( 11): 4087– 4097

[131]

Kour R, Arya S, Verma S. . Potential substitutes for replacement of lead in perovskite solar cells: a review. Global Challenges (Hoboken, NJ), 2019, 3( 11): 1900050

[132]

Hao F, Stoumpos C C, Chang R P H. . Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 2014, 136( 22): 8094– 8099

[133]

Zuo F, Williams S T, Liang P. . Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Advanced Materials, 2014, 26( 37): 6454– 6460

[134]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52( 15): 9019– 9038

[135]

Babayigit A, Duy Thanh D, Ethirajan A. . Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Scientific Reports, 2016, 6( 1): 18721

[136]

Kooijman M, Muscarella L A, Williams R M. Perovskite thin film materials stabilized and enhanced by zinc(II) doping. Applied Sciences (Basel, Switzerland), 2019, 9( 8): 1678

[137]

Chen R, Hou D, Lu C. . Zinc ion as effective film morphology controller in perovskite solar cells. Sustainable Energy & Fuels, 2018, 2( 5): 1093– 1100

[138]

Zheng H, Liu G, Xu X. . Acquiring high-performance and stable mixed-dimensional perovskite solar cells by using a transition-metal-substituted Pb precursor. ChemSusChem, 2018, 11( 18): 3269– 3275

[139]

Shai X, Wang J, Sun P. . Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 2018, 48 : 117– 127

[140]

Jung E H, Jeon N J, Park E Y. . Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567( 7749): 511– 515

[141]

Said A A, Xie J, Zhang Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019, 15( 27): 1900854

[142]

Gu P, Wang N, Wu A. . An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chemistry, an Asian Journal, 2016, 11( 15): 2135– 2138

[143]

Gu P, Wang N, Wang C. . Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 16): 7339– 7344

[144]

Jeong J, Kim M, Seo J. . Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592( 7854): 381– 385

[145]

Tsakalakos L. Nanotechnology for Photovoltaics. New York: CRC Press, 2010

[146]

Guha S. Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition. Solar Energy, 2004, 77( 6): 887– 892

[147]

Yamaguchi M, Nishimura K I, Sasaki T. . Novel materials for high-efficiency III–V multi-junction solar cells. Solar Energy, 2008, 82( 2): 173– 180

[148]

Takamoto T Washio H Juso H. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In: 2014 IEEE 40th Photovoltaic Specialist Conference, Denver, CO, USA, 2014

[149]

Dimroth F, Tibbits T N D, Niemeyer M. . Four-junction wafer-bonded concentrator solar cells. IEEE International Journal of Photovoltaics, 2016, 6( 1): 343– 349

[150]

Geisz J F, Steiner M A, Jain N. . Building a six-junction inverted metamorphic concentrator solar cell. IEEE International Journal of Photovoltaics, 2018, 8( 2): 626– 632

[151]

Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 2016, 34( 4): 485– 526

[152]

Muteri V, Cellura M, Curto D. . Review on life cycle assessment of solar photovoltaic panels. Energies, 2020, 13( 1): 252

[153]

Andreani L C, Bozzola A, Kowalczewski P. . Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 2019, 4( 1): 1548305

[154]

Yang D, Zhang X, Hou Y. . 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy, 2021, 84 : 105934

[155]

Al-Ashouri A, Köhnen E, Li B. . Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370( 6522): 1300– 1309

[156]

Xu J, Boyd C C, Yu Z J. . Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367( 6482): 1097– 1104

[157]

Hou Y, Aydin E, de Bastiani M. . Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367( 6482): 1135– 1140

[158]

Chen B, Yu Z J, Manzoor S. . Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4( 4): 850– 864

[159]

Wang Z, Zhu X, Zuo S. . 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Advanced Functional Materials, 2020, 30( 4): 1908298

[160]

Werner S, Lohmüller E, Maier S. . Challenges for lowly-doped phosphorus emitters in silicon solar cells with screen-printed silver contacts. Energy Procedia, 2017, 124 : 936– 946

[161]

Vak D, Kim S S, Jo J. . Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Applied Physics Letters, 2007, 91( 8): 081102

[162]

Hoth C N, Steim R, Schilinsky P. . Topographical and morphological aspects of spray coated organic photovoltaics. Organic Electronics, 2009, 10( 4): 587– 593

[163]

Girotto C, Moia D, Rand B P. . High-performance organic solar cells with spray-coated hole-transport and active layers. Advanced Functional Materials, 2011, 21( 1): 64– 72

[164]

Kang J W, Kang Y, Jung S. . Fully spray-coated inverted organic solar cells. Solar Energy Materials and Solar Cells, 2012, 103 : 76– 79

[165]

Wang T, Scarratt N W, Yi H. . Fabricating high performance, donor-acceptor copolymer solar cells by spray-coating in air. Advanced Energy Materials, 2013, 3( 4): 505– 512

[166]

Zhang Y, Griffin J, Scarratt N W. . High efficiency arrays of polymer solar cells fabricated by spray-coating in air. Progress in Photovoltaics: Research and Applications, 2016, 24( 3): 275– 282

[167]

Barrows A T, Pearson A J, Kwak C K. . Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7( 9): 2944– 2950

[168]

Das S, Yang B, Gu G. . High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics, 2015, 2( 6): 680– 686

[169]

Tait J G, Manghooli S, Qiu W. . Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 10): 3792– 3797

[170]

Huang H, Shi J, Zhu L. . Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 2016, 27 : 352– 358

[171]

Heo J H, Lee M H, Jang M H. . Highly efficient CH3NH3PbI3–xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 45): 17636– 17642

[172]

Mohamad D K, Griffin J, Bracher C. . Spray-cast multilayer organometal perovskite solar cells fabricated in air. Advanced Energy Materials, 2016, 6( 22): 1600994

[173]

Bishop J E, Mohamad D K, Wong-Stringer M. . Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Scientific Reports, 2017, 7( 1): 7962

[174]

Hu Z, Zhang J, Xiong S. . Performance of polymer solar cells fabricated by dip coating process. Solar Energy Materials and Solar Cells, 2012, 99 : 221– 225

[175]

Hu Z, Zhang J, Xiong S. . Annealing-free, air-processed and high-efficiency polymer solar cells fabricated by a dip coating process. Organic Electronics, 2012, 13( 1): 142– 146

[176]

Harun W S W, Asri R I M, Alias J. . A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 2018, 44( 2): 1250– 1268

[177]

Aziz F, Ismail A F. Spray coating methods for polymer solar cells fabrication: a review. Materials Science in Semiconductor Processing, 2015, 39 : 416– 425

[178]

Li L, Gao P, Schuermann K C. . Controllable growth and field-effect property of monolayer to multilayer microstripes of an organic semiconductor. Journal of the American Chemical Society, 2010, 132( 26): 8807– 8809

[179]

Roland S, Pellerin C, Bazuin C G. . Evolution of small molecule content and morphology with dip-coating rate in supramolecular PS–P4VP thin films. Macromolecules, 2012, 45( 19): 7964– 7972

[180]

Chou C S Chou F Kang J Y. Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells . Powder Technology, 2012, 215− 216: 215− 216

[181]

Adnan M, Lee J K. All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Scientific Reports, 2018, 8( 1): 2168

[182]

Adnan M, Lee J K. Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Advances, 2020, 10( 9): 5454– 5461

[183]

Adnan M, Irshad Z, Lee J K. Facile all-dip-coating deposition of highly efficient (CH3)3NPbI3–xClx perovskite materials from aqueous non-halide lead precursor. RSC Advances, 2020, 10( 48): 29010– 29017

[184]

Gao T Jelle B P. Nanoelectrochromics for smart windows: materials and methodologies. In: Proceedings of the TechConnect World Innovation Conference 2016, Washington DC: USA, 2016

[185]

Razza S, Castro-Hermosa S, di Carlo A. . Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 2016, 4( 9): 091508

[186]

Williams S T, Rajagopal A, Chueh C C. . Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. Journal of Physical Chemistry Letters, 2016, 7( 5): 811– 819

[187]

Chen W, Wu Y, Yue Y. . Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350( 6263): 944– 948

[188]

Cui Y, Yao H, Hong L. . Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 2020, 7( 7): 1239– 1246

[189]

Yang M, Zhou Y, Zeng Y. . Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 2015, 27( 41): 6363– 6370

[190]

Qiu W, Merckx T, Jaysankar M. . Pinhole-free perovskite films for efficient solar modules. Energy & Environmental Science, 2016, 9( 2): 484– 489

[191]

Agresti A, Pescetelli S, Palma A L. . Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Letters, 2017, 2( 1): 279– 287

[192]

Swartwout R, Hoerantner M T, Bulović V. Scalable deposition methods for large-area production of perovskite thin films. Energy & Environmental Materials, 2019, 2( 2): 119– 145

[193]

Ding X, Liu J, Harris T A L. A review of the operating limits in slot die coating processes. AIChE Journal, 2016, 62( 7): 2508– 2524

[194]

Carvalho M S, Kheshgi H S. Low-flow limit in slot coating: theory and experiments. AIChE Journal, 2000, 46( 10): 1907– 1917

[195]

Patidar R, Burkitt D, Hooper K. . Slot-die coating of perovskite solar cells: an overview. Materials Today Communications, 2020, 22 : 100808

[196]

Hwang K, Jung Y S, Heo Y J. . Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 2015, 27( 7): 1241– 1247

[197]

di Giacomo F, Shanmugam S, Fledderus H. . Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 2018, 181 : 53– 59

[198]

Burkitt D, Searle J, Watson T. Perovskite solar cells in NIP structure with four slot-die-coated layers. Royal Society Open Science, 2018, 5( 5): 172158

[199]

Lee D, Jung Y S, Heo Y J. . Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells. ACS Applied Materials & Interfaces, 2018, 10( 18): 16133– 16139

[200]

Heo Y J, Kim J E, Weerasinghe H. . Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy, 2017, 41 : 443– 451

[201]

Kim Y Y, Park E Y, Yang T Y. . Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 26): 12447– 12454

[202]

Dou B, Whitaker J B, Bruening K. . Roll-to-roll printing of perovskite solar cells. ACS Energy Letters, 2018, 3( 10): 2558– 2565

[203]

Yang Z, Chueh C C, Zuo F. . High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Advanced Energy Materials, 2015, 5( 13): 1500328

[204]

Qiao F, Xie Y, He G. . Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells. Nanoscale, 2020, 12( 3): 1269– 1280

[205]

Zhao J, Green M A. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Transactions on Electron Devices, 1991, 38( 8): 1925– 1934

[206]

Xi J Q, Schubert M F, Kim J K. . Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photonics, 2007, 1( 3): 176– 179

[207]

Koynov S, Brandt M S, Stutzmann M. Black nonreflecting silicon surfaces for solar cells. Applied Physics Letters, 2006, 88( 20): 203107

[208]

Huang Y, Chattopadhyay S, Jen Y J. . Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology, 2007, 2( 12): 770– 774

[209]

Zhu J, Yu Z, Burkhard G F. . Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Letters, 2009, 9( 1): 279– 282

[210]

Jeong S, Garnett E C, Wang S. . Hybrid silicon nanocone-polymer solar cells. Nano Letters, 2012, 12( 6): 2971– 2976

[211]

Tsakalakos L, Balch J, Fronheiser J. . Silicon nanowire solar cells. Applied Physics Letters, 2007, 91( 23): 233117

[212]

Fan Z, Kapadia R, Leu P W. . Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Letters, 2010, 10( 10): 3823– 3827

[213]

Berger O, Inns D, Aberle A G. Commercial white paint as back surface reflector for thin-film solar cells. Solar Energy Materials and Solar Cells, 2007, 91( 13): 1215– 1221

[214]

Ye L, Zhang Y, Zhang X. . Sol-gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 2013, 111 : 160– 164

[215]

Chen J, Wang S, Sun Q. . Light-manipulation schemes: a facile solution-processed light manipulation structure for organic solar cells. Advanced Optical Materials, 2019, 7( 2): 1970006

[216]

Liyanage W P R, Nath M. CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 38): 14637– 14648

[217]

Zhuang T, Liu Y, Li Y. . Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angewandte Chemie International Edition, 2016, 55( 22): 6396– 6400

[218]

Jošt M, Albrecht S, Kegelmann L. . Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics, 2017, 4( 5): 1232– 1239

[219]

Myers J D, Cao W, Cassidy V. . A universal optical approach to enhancing efficiency of organic-based photovoltaic devices. Energy & Environmental Science, 2012, 5( 5): 6900

[220]

Chen J, Jin T, Li Y. . Recent progress of light manipulation strategies in organic and perovskite solar cells. Nanoscale, 2019, 11( 40): 18517– 18536

[221]

Day J, Senthilarasu S, Mallick T K. Improving spectral modification for applications in solar cells: a review. Renewable Energy, 2019, 132 : 186– 205

[222]

Ali N M, Rafat N H. Modeling and simulation of nanorods photovoltaic solar cells: a review. Renewable & Sustainable Energy Reviews, 2017, 68 : 212– 220

[223]

Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9( 3): 205– 213

[224]

Mandal P, Sharma S. Progress in plasmonic solar cell efficiency improvement: a status review. Renewable & Sustainable Energy Reviews, 2016, 65 : 537– 552

[225]

Pala R A, White J, Barnard E. . Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21( 34): 3504– 3509

[226]

Lee Y C, Huang C F, Chang J Y. . Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. Optics Express, 2008, 16( 11): 7969– 7975

[227]

Chao C C, Wang C M, Chang Y C. . Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell. Optical Review, 2009, 16( 3): 343– 346

[228]

Rockstuhl C, Fahr S, Lederer F. Absorption enhancement in solar cells by localized plasmon polaritons. Journal of Applied Physics, 2008, 104( 12): 123102

[229]

Bai W, Gan Q, Bartoli F. . Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Optics Letters, 2009, 34( 23): 3725

[230]

Ferry V E, Verschuuren M A, Li H B T. . Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 2009, 95( 18): 183503

[231]

Sai H, Fujiwara H, Kondo M. Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93( 6−7): 1087– 1090

[232]

Mokkapati S, Beck F J, Polman A. . Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Applied Physics Letters, 2009, 95( 5): 053115

[233]

Mendes M J, Morawiec S, Simone F. . Colloidal plasmonic back reflectors for light trapping in solar cells. Nanoscale, 2014, 6( 9): 4796– 4805

[234]

Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93( 12): 121904

[235]

Skrabalak S E, Chen J, Sun Y. . Gold nanocages: synthesis, properties, and applications. Accounts of Chemical Research, 2008, 41( 12): 1587– 1595

[236]

Lee D S, Kim W, Cha B G. . Self-position of Au NPs in perovskite solar cells: optical and electrical contribution. ACS Applied Materials & Interfaces, 2016, 8( 1): 449– 454

[237]

Yuan Z, Wu Z, Bai S. . Perovskite solar cells: hot-electron injection in a sandwiched TiOx-Au-TiOx structure for high-performance planar perovskite solar cells. Advanced Energy Materials, 2015, 5( 10): 1500038

[238]

Reineck P, Brick D, Mulvaney P. . Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. Journal of Physical Chemistry Letters, 2016, 7( 20): 4137– 4141

[239]

Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters, 2005, 86( 6): 063106

[240]

Xu Z, Lin Y, Yin M. . Nanotubes: understanding the enhancement mechanisms of surface plasmon-mediated photoelectrochemical electrodes: a case study on Au nanoparticle decorated TiO2 nanotubes. Advanced Materials Interfaces, 2015, 2( 13): 1500169

[241]

Chen S, Wang Y, Liu Q. . Broadband enhancement of PbS quantum dot solar cells by the synergistic effect of plasmonic gold nanobipyramids and nanospheres. Advanced Energy Materials, 2018, 8( 8): 1701194

[242]

Srivastava A, Samajdar D P, Sharma D. Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review. Solar Energy, 2018, 173 : 905– 919

[243]

Edinbarough I. Experimental study on the optimum harvesting of sunlight for an efficient solar energy system. In: 2013 ASEE Annual Conference & Exposition Proceedings, Atlanta, Georgia, USA, 2013

[244]

Kvasznicza Z Elmer G. Optimizing solar tracking systems for solar cells. In: Proceeding of 4th Serbian–Hungarian joint Symposium on Intelligent Systems, 2006

[245]

Mousazadeh H, Keyhani A, Javadi A. . A review of principle and sun-tracking methods for maximizing solar systems output. Renewable & Sustainable Energy Reviews, 2009, 13( 8): 1800– 1818

[246]

Luque-Heredia I Moreno J Magalhaes P. Inspira’s CPV sun tracking. In: Luque, A L, Andreev V M, eds. Concentrator Photovoltaics. Berlin, Heidelberg: Springer, 2007

[247]

García-Segura A, Fernández-García A, Ariza M J. . Durability studies of solar reflectors: a review. Renewable & Sustainable Energy Reviews, 2016, 62 : 453– 467

[248]

Wiesinger F, Sutter F, Fernández-García A. . Sand erosion on solar reflectors: accelerated simulation and comparison with field data. Solar Energy Materials and Solar Cells, 2016, 145 : 303– 313

[249]

Kennedy C E, Terwilliger K. Optical durability of candidate solar reflectors. Journal of Solar Energy Engineering, 2005, 127( 2): 262– 269

[250]

Kennedy C E Terwilliger K Jorgensen G J. Analysis of accelerated exposure testing of thin-glass mirror matrix. In: Proceedings of ASME 2005 International Solar Energy Conference, Orlando, Florida, USA, 2008

[251]

Almanza R, Hernández P, Martínez I. . Development and mean life of aluminum first-surface mirrors for solar energy applications. Solar Energy Materials and Solar Cells, 2009, 93( 9): 1647– 1651

[252]

Price H, Lu¨pfert E, Kearney D. . Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering, 2002, 124( 2): 109– 125

[253]

Xie W T, Dai Y J, Wang R Z. . Concentrated solar energy applications using Fresnel lenses: a review. Renewable & Sustainable Energy Reviews, 2011, 15( 6): 2588– 2606

[254]

Kumar V, Shrivastava R L, Untawale S P. Fresnel lens: a promising alternative of reflectors in concentrated solar power. Renewable & Sustainable Energy Reviews, 2015, 44 : 376– 390

[255]

Miller D C, Kurtz S R. Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application. Solar Energy Materials and Solar Cells, 2011, 95( 8): 2037– 2068

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (12722KB)

5011

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/