A review on high performance photovoltaic cells and strategies for improving their efficiency

Muni Raj MAURYA, John-John CABIBIHAN, Kishor Kumar SADASIVUNI, Kalim DESHMUKH

PDF(12722 KB)
PDF(12722 KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (4) : 548-580. DOI: 10.1007/s11708-022-0826-8
REVIEW ARTICLE
REVIEW ARTICLE

A review on high performance photovoltaic cells and strategies for improving their efficiency

Author information +
History +

Abstract

The introduction of a practical solar cell by Bell Laboratory, which had an efficiency of approximately 6%, signified photovoltaic technology as a potentially viable energy source. Continuous efforts have been made to increase power conversion efficiency (PCE). In the present review, the advances made in solar cells (SCs) are summarized. Material and device engineering are described for achieving enhanced light absorption, electrical properties, stability and higher PCE in SCs. The strategies in materials and coating techniques for large area deposition are further elaborated, which is expected to be helpful for realizing high-efficiency SCs. The methods of light-harvesting in SCs via anti-reflecting coatings, surface texturing, patterned growth of nanostructure, and plasmonics are discussed. Moreover, progress in mechanical methods that are used for sun tracking are elaborated. The assistance of the above two protocols in maximizing the power output of SCs are discussed in detail. Finally, further research efforts needed to overcome roadblocks in commercialization were highlighted and perspectives on the future development of this rapidly advancing field are offered.

Graphical abstract

Keywords

photovoltaic / efficiency / large area deposition / light harvesting / sun tracker

Cite this article

Download citation ▾
Muni Raj MAURYA, John-John CABIBIHAN, Kishor Kumar SADASIVUNI, Kalim DESHMUKH. A review on high performance photovoltaic cells and strategies for improving their efficiency. Front. Energy, 2022, 16(4): 548‒580 https://doi.org/10.1007/s11708-022-0826-8

References

[1]
Rapier R. Fossil fuels still supply 84 percent of world energy—and other eye openers from BP’s annual review. 2020, available at the website of forbes.com
[2]
Shaikh J S, Shaikh N S, Sheikh A D. . Perovskite solar cells: in pursuit of efficiency and stability. Materials & Design, 2017, 136 : 54– 80
CrossRef Google scholar
[3]
Becquerel M E. On electrod effect under the influence of solar radiation. Proceedings of the Academy of Science, 1839, 9: 561− 567 (in French)
[4]
Xu T, Yu L. How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17( 1): 11– 15
CrossRef Google scholar
[5]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32( 3): 510– 519
CrossRef Google scholar
[6]
Sze S Ng K K. Physics of Semiconductor Devices. Wiley Online Books, 2006
[7]
Singh P, Ravindra N M. Temperature dependence of solar cell performance—an analysis. Solar Energy Materials and Solar Cells, 2012, 101 : 36– 45
CrossRef Google scholar
[8]
Qi B, Wang J. Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15( 23): 8972
CrossRef Google scholar
[9]
Guo X, Zhou N, Lou S J. . Polymer solar cells with enhanced fill factors. Nature Photonics, 2013, 7( 10): 825– 833
CrossRef Google scholar
[10]
You J, Dou L, Hong Z. . Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38( 12): 1909– 1928
CrossRef Google scholar
[11]
You J, Chen C, Hong Z. . 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Advanced Materials, 2013, 25( 29): 3973– 3978
CrossRef Google scholar
[12]
Fan X, Guo S, Fang G. . An efficient PDPPTPT: PC61BM-based tandem polymer solar cells with a Ca/Ag/MoO3 intermediate layer. Solar Energy Materials and Solar Cells, 2013, 113 : 135– 139
CrossRef Google scholar
[13]
Zhao D, Tang W, Ke L. . Efficient bulk heterojunction solar cells with poly[2, 7-(9, 9-dihexylfluorene)-alt-bithiophene]and 6, 6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. ACS Applied Materials & Interfaces, 2010, 2( 3): 829– 837
CrossRef Google scholar
[14]
Guo Z, Lee D, Schaller R D. . Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends. Journal of the American Chemical Society, 2014, 136( 28): 10024– 10032
CrossRef Google scholar
[15]
Kim J, Yun M H, Kim G H. . Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control. ACS Applied Materials & Interfaces, 2014, 6( 10): 7523– 7534
CrossRef Google scholar
[16]
Chen H Y, Lin S, Sun J Y. . Morphologic improvement of the PBDTTT-C and PC71BM blend film with mixed solvent for high-performance inverted polymer solar cells. Nanotechnology, 2013, 24( 48): 484009
CrossRef Google scholar
[17]
An T K, Kang I, Yun H. . Solvent additive to achieve highly ordered nanostructural semicrystalline DPP copolymers: toward a high charge carrier mobility. Advanced Materials, 2013, 25( 48): 7003– 7009
CrossRef Google scholar
[18]
Guan Z, Yu J, Huang J. . Power efficiency enhancement of solution-processed small-molecule solar cells based on squaraine via thermal annealing and solvent additive methods. Solar Energy Materials and Solar Cells, 2013, 109 : 262– 269
CrossRef Google scholar
[19]
Tan M J, Zhong S, Li J. . Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. ACS Applied Materials & Interfaces, 2013, 5( 11): 4696– 4701
CrossRef Google scholar
[20]
Elumalai N K, Vijila C, Jose R. . Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering. Physical Chemistry Chemical Physics, 2013, 15( 43): 19057
CrossRef Google scholar
[21]
Tan Z, Li S, Wang F. . High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2015, 4( 1): 4691
CrossRef Google scholar
[22]
Lu L, Yu L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Advanced Materials, 2014, 26( 26): 4413– 4430
CrossRef Google scholar
[23]
Wysocki J J, Rappaport P. Effect of temperature on photovoltaic solar energy conversion. Journal of Applied Physics, 1960, 31( 3): 571– 578
CrossRef Google scholar
[24]
Fan J C C. Theoretical temperature dependence of solar cell parameters. Solar Cells, 1986, 17( 2−3): 309– 315
CrossRef Google scholar
[25]
Singh P, Singh S N, Lal M. . Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells, 2008, 92( 12): 1611– 1616
CrossRef Google scholar
[26]
Goetzberger A, Hebling C. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 2000, 62( 1−2): 1– 19
CrossRef Google scholar
[27]
Hosenuzzaman M, Rahim N A, Selvaraj J. . Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable & Sustainable Energy Reviews, 2015, 41 : 284– 297
CrossRef Google scholar
[28]
Subtil Lacerda J, van den Bergh J C J M. Diversity in solar photovoltaic energy: implications for innovation and policy. Renewable & Sustainable Energy Reviews, 2016, 54 : 331– 340
CrossRef Google scholar
[29]
Yoshikawa K, Kawasaki H, Yoshida W. . Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017, 2( 5): 17032
CrossRef Google scholar
[30]
Peng J, Lu L, Yang H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable & Sustainable Energy Reviews, 2013, 19 : 255– 274
CrossRef Google scholar
[31]
Tyagi V V, Rahim N A A, Rahim N A. . Progress in solar PV technology: research and achievement. Renewable & Sustainable Energy Reviews, 2013, 20 : 443– 461
CrossRef Google scholar
[32]
Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering R Reports, 2003, 40( 1): 1– 46
CrossRef Google scholar
[33]
Miles R W, Hynes K M, Forbes I. Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials, 2005, 51( 1−3): 1– 42
CrossRef Google scholar
[34]
El Chaar L, lamont L A, El Zein N. Review of photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15( 5): 2165– 2175
CrossRef Google scholar
[35]
Avrutin V, Izyumskaya N, Morkoç H. Semiconductor solar cells: recent progress in terrestrial applications. Superlattices and Microstructures, 2011, 49( 4): 337– 364
CrossRef Google scholar
[36]
Green M A, Dunlop E D, Hohl-Ebinger J. . Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28( 1): 3– 15
CrossRef Google scholar
[37]
Braga A F B, Moreira S P, Zampieri P R. . New processes for the production of solar-grade polycrystalline silicon: a review. Solar Energy Materials and Solar Cells, 2008, 92( 4): 418– 424
CrossRef Google scholar
[38]
Bruton T M. General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 2002, 72( 1-4): 3– 10
CrossRef Google scholar
[39]
van der Zwaan B, Rabl A. Prospects for PV: a learning curve analysis. Solar Energy, 2003, 74( 1): 19– 31
CrossRef Google scholar
[40]
Keogh W M, Blakers A W. Accurate measurement, using natural sunlight, of silicon solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12( 1): 1– 19
CrossRef Google scholar
[41]
Hanoka J I. An overview of silicon ribbon growth technology. Solar Energy Materials and Solar Cells, 2001, 65( 1−4): 231– 237
CrossRef Google scholar
[42]
Peng K, Lee S T. Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials, 2011, 23( 2): 198– 215
CrossRef Google scholar
[43]
Gangopadhyay U, Jana S, Das S. State of art of solar photovoltaic technology. Conference Papers in Energy, 2013, 2013 : 764132
CrossRef Google scholar
[44]
Mundo-Hernández J, de Celis Alonso B, Hernández-Álvarez J. . An overview of solar photovoltaic energy in Mexico and Germany. Renewable & Sustainable Energy Reviews, 2014, 31 : 639– 649
CrossRef Google scholar
[45]
Boutchich M, Alvarez J, Diouf D. . Amorphous silicon diamond based heterojunctions with high rectification ratio. Journal of Non-Crystalline Solids, 2012, 358( 17): 2110– 2113
CrossRef Google scholar
[46]
Subhan F E, Khan A D, Hilal F E. . Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings. RSC Advances, 2020, 10( 20): 11836– 11842
CrossRef Google scholar
[47]
Matsui T, Bidiville A, Maejima K. . High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability. Applied Physics Letters, 2015, 106( 5): 053901
CrossRef Google scholar
[48]
Sai H, Matsui T, Kumagai H. . Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 2018, 11( 2): 022301
CrossRef Google scholar
[49]
Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993, 62( 22): 2851– 2852
CrossRef Google scholar
[50]
Cdte C, Solar P, Wu X. . 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell. Renewable Energy, 2001, 22– 26
[51]
Aberle A G. Thin-film solar cells. Thin Solid Films, 2009, 517( 17): 4706– 4710
CrossRef Google scholar
[52]
Powalla M, Bonnet D. Thin-film solar cells based on the polycrystalline compound semiconductors CIS and CdTe. Advances in OptoElectronics, 2007, 2007 : 097545
CrossRef Google scholar
[53]
Wang D, Yang R, Wu L. . Band alignment of CdTe with MoOx oxide and fabrication of high efficiency CdTe solar cells. Solar Energy, 2018, 162 : 637– 645
CrossRef Google scholar
[54]
Kazmerski L L, White F R, Morgan G K. Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters, 1976, 29( 4): 268– 270
CrossRef Google scholar
[55]
Mickelsen R A, Chen W S. Development of a 9.4% efficiency thin-film CulnSe2/CdS solar cell. In: Proceeding of Photovoltaic Specialists Conference, Institute of Electronics Engineers, 1981, 800– 804
[56]
Wang Y C, Shieh H P D. Double-graded bandgap in Cu(In, Ga)Se2 thin film solar cells by low toxicity selenization process. Applied Physics Letters, 2014, 105( 7): 073901
CrossRef Google scholar
[57]
Cui X, Yun D, Zhong C. . A facile route for synthesis of CuInxGa1−xSe2 nanocrystals with tunable composition for photovoltaic application. Journal of Sol-Gel Science and Technology, 2015, 76( 3): 469– 475
CrossRef Google scholar
[58]
Reinhard P, Pianezzi F, Bissig B. . Cu(In, Ga)Se2 thin-film solar cells and modules—a boost in efficiency due to potassium. IEEE International Journal of Photovoltaics, 2015, 5( 2): 656– 663
CrossRef Google scholar
[59]
Fischer J, Larsen J K, Guillot J. . Composition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks. Solar Energy Materials and Solar Cells, 2014, 126 : 88– 95
CrossRef Google scholar
[60]
Rampino S, Armani N, Bissoli F. . 15% efficient Cu(In, Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition. Applied Physics Letters, 2012, 101( 13): 132107
CrossRef Google scholar
[61]
Nakada T. Invited Paper: CIGS-based thin film solar cells and modules: unique material properties. Electronic Materials Letters, 2012, 8( 2): 179– 185
CrossRef Google scholar
[62]
Kapur V Kemmerle R Bansal A. Manufacturing of ‘ink based’ CIGS solar cells/modules. In: 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 2008
[63]
Romeo A, Terheggen M, Abou-Ras D. . Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12( 23): 93– 111
CrossRef Google scholar
[64]
Ramanathan K, Contreras M A, Perkins C L. . Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11( 4): 225– 230
CrossRef Google scholar
[65]
Guillemoles J F. The puzzle of Cu(In, Ga)Se2 (CIGS) solar cells stability . Thin Solid Films, 2002, 403− 404: 403− 404
[66]
Dhere N G. Present status and future prospects of CIGSS thin film solar cells. Solar Energy Materials and Solar Cells, 2006, 90( 15): 2181– 2190
CrossRef Google scholar
[67]
Rau U, Schock H W. Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics. A, Materials Science & Processing, 1999, 69( 2): 131– 147
CrossRef Google scholar
[68]
Hanna G, Jasenek A, Rau U. . Influence of the Ga-content on the bulk defect densities of Cu(In, Ga)Se2. Thin Solid Films, 2001, 387( 1−2): 71– 73
CrossRef Google scholar
[69]
Singh U P, Patra S P. Progress in polycrystalline thin-film Cu(In, Ga). International Journal of Photoenergy, 2010, 2010 : 468147
CrossRef Google scholar
[70]
Hiroi H, Iwata Y, Adachi S. . New world-record efficiency for pure-sulfide Cu(In, Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE International Journal of Photovoltaics, 2016, 6( 3): 760– 763
CrossRef Google scholar
[71]
Nakamura M Kouji Y Chiba Y. Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer . In: 2013 IEEE 39th Photovoltaic Specialists Conference. Tampa, FL, USA, 2013
[72]
Kobayashi T, Yamaguchi H, Nakada T. Effects of combined heat and light soaking on device performance of Cu(In, Ga)Se2solar cells with ZnS(O, OH) buffer layer. Progress in Photovoltaics: Research and Applications, 2014, 22( 1): 115– 121
CrossRef Google scholar
[73]
Kamada R Yagioka T Adachi S. New world record Cu(In, Ga)(Se, S)2 thin film solar cell efficiency beyond 22% . In: 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016
[74]
Nakamura M, Yamaguchi K, Kimoto Y. . Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE International Journal of Photovoltaics, 2019, 9( 6): 1863– 1867
CrossRef Google scholar
[75]
Yin W, Yang J, Kang J. . Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 17): 8926– 8942
CrossRef Google scholar
[76]
Ramanujam J, Singh U P. Copper indium gallium selenide based solar cells—a review. Energy & Environmental Science, 2017, 10( 6): 1306– 1319
CrossRef Google scholar
[77]
Li G, Shrotriya V, Huang J. . High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4( 11): 864– 868
CrossRef Google scholar
[78]
Liang Y, Wu Y, Feng D. . Development of new semiconducting polymers for high performance solar cells. Journal of the American Chemical Society, 2009, 131( 1): 56– 57
CrossRef Google scholar
[79]
Huo L, Zhang S, Guo X. . Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angewandte Chemie International Edition, 2011, 50( 41): 9697– 9702
CrossRef Google scholar
[80]
Liao S H, Jhuo H J, Yeh P N. . Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Scientific Reports, 2015, 4( 1): 6813
CrossRef Google scholar
[81]
Zhao J, Li Y, Yang G. . Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1( 2): 15027
CrossRef Google scholar
[82]
Bin H, Gao L, Zhang Z. . 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7( 1): 13651
CrossRef Google scholar
[83]
Fei Z, Eisner F D, Jiao X. . An alkylated indacenodithieno[3, 2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Advanced Materials, 2018, 30( 8): 1705209
CrossRef Google scholar
[84]
Zhang S, Qin Y, Zhu J. . Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Advanced Materials, 2018, 30( 20): 1800868
CrossRef Google scholar
[85]
Cui Y, Yao H, Yang C. . Organic solar cells with an efficiency approaching 15%. Acta Polymerica Sinica, 2018, 1( 2): 223– 230
[86]
Meng L, Zhang Y, Wan X. . Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361( 6407): 1094– 1098
CrossRef Google scholar
[87]
Xue R, Zhang J, Li Y. . Organic solar cell materials toward commercialization. Small, 2018, 14( 41): 1801793
CrossRef Google scholar
[88]
di Carlo Rasi D, Janssen R A J. Advances in solution-processed multijunction organic solar cells. Advanced Materials, 2019, 31( 10): 1806499
CrossRef Google scholar
[89]
Zhang C, Wang G, Han H. . Self-assembled thin-layer glycomaterials with a proper shell thickness for targeted and activatable cell imaging. Frontiers in Chemistry, 2019, 7 : 294
CrossRef Google scholar
[90]
Chen W, Zhang Q. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5( 6): 1275– 1302
CrossRef Google scholar
[91]
Chen W, Yang X, Long G. . A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3( 18): 4698– 4705
CrossRef Google scholar
[92]
Sun H, Song X, Xie J. . PDI derivative through fine-tuning the molecular structure for fullerene-free organic solar cells. ACS Applied Materials & Interfaces, 2017, 9( 35): 29924– 29931
CrossRef Google scholar
[93]
Li C, Zhou J, Song J. . Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6( 6): 605– 613
CrossRef Google scholar
[94]
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353( 6346): 737– 740
CrossRef Google scholar
[95]
Yeoh M E, Chan K Y. Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research, 2017, 41( 15): 2446– 2467
CrossRef Google scholar
[96]
Mehmood U, Rahman S U, Harrabi K. . Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014, 2014 : 974782
CrossRef Google scholar
[97]
Carella A, Borbone F, Centore R. Research progress on photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6 : 481
CrossRef Google scholar
[98]
Richhariya G, Kumar A, Tekasakul P. . Natural dyes for dye sensitized solar cell: a review. Renewable & Sustainable Energy Reviews, 2017, 69 : 705– 718
CrossRef Google scholar
[99]
Wu J, Lan Z, Lin J. . Electrolytes in dye-sensitized solar cells. Chemical Reviews, 2015, 115( 5): 2136– 2173
CrossRef Google scholar
[100]
Iftikhar H, Sonai G G, Hashmi S G. . Progress on electrolytes development in dye-sensitized solar cells. Materials (Basel), 2019, 12( 12): 1998
CrossRef Google scholar
[101]
Zhao Y L, Yao D S, Song C B. . CNT–G–TiO2 layer as a bridge linking TiO2 nanotube arrays and substrates for efficient dye-sensitized solar cells. RSC Advances, 2015, 5( 54): 43805– 43809
CrossRef Google scholar
[102]
Qiu Y, Chen W, Yang S. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angewandte Chemie International Edition, 2010, 49( 21): 3675– 3679
CrossRef Google scholar
[103]
Maheswari D, Venkatachalam P. Fabrication of high efficiency dye-sensitised solar cell with zirconia-doped TiO2 nanoparticle and nanowire composite photoanode film. Australian Journal of Chemistry, 2015, 68( 6): 881
CrossRef Google scholar
[104]
Huang Y, Wu H, Yu Q. . Single-layer TiO2 film composed of mesoporous spheres for high-efficiency and stable dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering, 2018, 6( 3): 3411– 3418
CrossRef Google scholar
[105]
Yella A, Lee H W, Tsao H N. . Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334( 6056): 629– 634
CrossRef Google scholar
[106]
Kyaw A K K, Tantang H, Wu T. . Dye-sensitized solar cell with a pair of carbon-based electrodes. Journal of Physics. D, Applied Physics, 2012, 45( 16): 165103
CrossRef Google scholar
[107]
Kyaw A K K, Tantang H, Wu T. . Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Applied Physics Letters, 2011, 99( 2): 021107
CrossRef Google scholar
[108]
Tantang H, Kyaw A K K, Zhao Y. . Nitrogen-doped carbon nanotube-based bilayer thin film as transparent counter electrode for dye-sensitized solar cells (DSSCs). Chemistry, an Asian Journal, 2012, 7( 3): 541– 545
CrossRef Google scholar
[109]
Liu X, Yang Z, Chueh C C. . Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 46): 17939– 17945
CrossRef Google scholar
[110]
Saliba M, Matsui T, Domanski K. . Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354( 6309): 206– 209
CrossRef Google scholar
[111]
Kojima A, Teshima K, Shirai Y. . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051
CrossRef Google scholar
[112]
Jeong M, Choi I W, Go E M. . Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369( 6511): 1615– 1620
CrossRef Google scholar
[113]
Heo J H, Han H J, Kim D. . Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8( 5): 1602– 1608
CrossRef Google scholar
[114]
Mali S S, Kim H, Kim H H. . Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Materials Today, 2018, 21( 5): 483– 500
CrossRef Google scholar
[115]
Chan S H, Wu M C, Lee K. . Enhancing perovskite solar cell performance and stability by doping Barium in methylammonium lead halide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 34): 18044– 18052
CrossRef Google scholar
[116]
Wu M C, Chan S H, Lee K. . Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO2 as the electron extraction layer through band alignment. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 35): 16920– 16931
CrossRef Google scholar
[117]
Chan S H, Chang Y H, Wu M C. High-performance perovskite solar cells based on low-temperature processed electron extraction layer. Frontiers in Materials, 2019, 6 : 57
CrossRef Google scholar
[118]
Dubey A, Adhikari N, Mabrouk S. . A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 6): 2406– 2431
CrossRef Google scholar
[119]
Noh J H, Im S H, Heo J H. . Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013, 13( 4): 1764– 1769
CrossRef Google scholar
[120]
Im J H, Lee C R, Lee J W. . 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3( 10): 4088
CrossRef Google scholar
[121]
Kim H S, Lee C R, Im J H. . Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2( 1): 591
CrossRef Google scholar
[122]
Lee M M, Teuscher J, Miyasaka T. . Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338( 6107): 643– 647
CrossRef Google scholar
[123]
Wang J T W, Ball J M, Barea E M. . Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 2014, 14( 2): 724– 730
CrossRef Google scholar
[124]
Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8( 2): 133– 138
CrossRef Google scholar
[125]
Klug M T, Osherov A, Haghighirad A A. . Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy & Environmental Science, 2017, 10( 1): 236– 246
CrossRef Google scholar
[126]
Abdelhady A L, Saidaminov M I, Murali B. . Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. Journal of Physical Chemistry Letters, 2016, 7( 2): 295– 301
CrossRef Google scholar
[127]
Wang Z, Li M, Yang Y. . High efficiency Pb-in binary metal perovskite solar cells. Advanced Materials, 2016, 28( 31): 6695– 6703
CrossRef Google scholar
[128]
Chang J, Lin Z, Zhu H. . Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 42): 16546– 16552
CrossRef Google scholar
[129]
Wang J T W, Wang Z, Pathak S. . Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 2016, 9( 9): 2892– 2901
CrossRef Google scholar
[130]
van der Stam W, Geuchies J J, Altantzis T. . Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. Journal of the American Chemical Society, 2017, 139( 11): 4087– 4097
CrossRef Google scholar
[131]
Kour R, Arya S, Verma S. . Potential substitutes for replacement of lead in perovskite solar cells: a review. Global Challenges (Hoboken, NJ), 2019, 3( 11): 1900050
CrossRef Google scholar
[132]
Hao F, Stoumpos C C, Chang R P H. . Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 2014, 136( 22): 8094– 8099
CrossRef Google scholar
[133]
Zuo F, Williams S T, Liang P. . Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Advanced Materials, 2014, 26( 37): 6454– 6460
CrossRef Google scholar
[134]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52( 15): 9019– 9038
CrossRef Google scholar
[135]
Babayigit A, Duy Thanh D, Ethirajan A. . Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Scientific Reports, 2016, 6( 1): 18721
CrossRef Google scholar
[136]
Kooijman M, Muscarella L A, Williams R M. Perovskite thin film materials stabilized and enhanced by zinc(II) doping. Applied Sciences (Basel, Switzerland), 2019, 9( 8): 1678
CrossRef Google scholar
[137]
Chen R, Hou D, Lu C. . Zinc ion as effective film morphology controller in perovskite solar cells. Sustainable Energy & Fuels, 2018, 2( 5): 1093– 1100
CrossRef Google scholar
[138]
Zheng H, Liu G, Xu X. . Acquiring high-performance and stable mixed-dimensional perovskite solar cells by using a transition-metal-substituted Pb precursor. ChemSusChem, 2018, 11( 18): 3269– 3275
CrossRef Google scholar
[139]
Shai X, Wang J, Sun P. . Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 2018, 48 : 117– 127
CrossRef Google scholar
[140]
Jung E H, Jeon N J, Park E Y. . Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567( 7749): 511– 515
CrossRef Google scholar
[141]
Said A A, Xie J, Zhang Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019, 15( 27): 1900854
CrossRef Google scholar
[142]
Gu P, Wang N, Wu A. . An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chemistry, an Asian Journal, 2016, 11( 15): 2135– 2138
CrossRef Google scholar
[143]
Gu P, Wang N, Wang C. . Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 16): 7339– 7344
CrossRef Google scholar
[144]
Jeong J, Kim M, Seo J. . Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592( 7854): 381– 385
CrossRef Google scholar
[145]
Tsakalakos L. Nanotechnology for Photovoltaics. New York: CRC Press, 2010
[146]
Guha S. Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition. Solar Energy, 2004, 77( 6): 887– 892
CrossRef Google scholar
[147]
Yamaguchi M, Nishimura K I, Sasaki T. . Novel materials for high-efficiency III–V multi-junction solar cells. Solar Energy, 2008, 82( 2): 173– 180
CrossRef Google scholar
[148]
Takamoto T Washio H Juso H. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In: 2014 IEEE 40th Photovoltaic Specialist Conference, Denver, CO, USA, 2014
[149]
Dimroth F, Tibbits T N D, Niemeyer M. . Four-junction wafer-bonded concentrator solar cells. IEEE International Journal of Photovoltaics, 2016, 6( 1): 343– 349
CrossRef Google scholar
[150]
Geisz J F, Steiner M A, Jain N. . Building a six-junction inverted metamorphic concentrator solar cell. IEEE International Journal of Photovoltaics, 2018, 8( 2): 626– 632
CrossRef Google scholar
[151]
Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 2016, 34( 4): 485– 526
CrossRef Google scholar
[152]
Muteri V, Cellura M, Curto D. . Review on life cycle assessment of solar photovoltaic panels. Energies, 2020, 13( 1): 252
CrossRef Google scholar
[153]
Andreani L C, Bozzola A, Kowalczewski P. . Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 2019, 4( 1): 1548305
CrossRef Google scholar
[154]
Yang D, Zhang X, Hou Y. . 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy, 2021, 84 : 105934
CrossRef Google scholar
[155]
Al-Ashouri A, Köhnen E, Li B. . Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370( 6522): 1300– 1309
CrossRef Google scholar
[156]
Xu J, Boyd C C, Yu Z J. . Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367( 6482): 1097– 1104
CrossRef Google scholar
[157]
Hou Y, Aydin E, de Bastiani M. . Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367( 6482): 1135– 1140
CrossRef Google scholar
[158]
Chen B, Yu Z J, Manzoor S. . Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4( 4): 850– 864
CrossRef Google scholar
[159]
Wang Z, Zhu X, Zuo S. . 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Advanced Functional Materials, 2020, 30( 4): 1908298
CrossRef Google scholar
[160]
Werner S, Lohmüller E, Maier S. . Challenges for lowly-doped phosphorus emitters in silicon solar cells with screen-printed silver contacts. Energy Procedia, 2017, 124 : 936– 946
CrossRef Google scholar
[161]
Vak D, Kim S S, Jo J. . Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Applied Physics Letters, 2007, 91( 8): 081102
CrossRef Google scholar
[162]
Hoth C N, Steim R, Schilinsky P. . Topographical and morphological aspects of spray coated organic photovoltaics. Organic Electronics, 2009, 10( 4): 587– 593
CrossRef Google scholar
[163]
Girotto C, Moia D, Rand B P. . High-performance organic solar cells with spray-coated hole-transport and active layers. Advanced Functional Materials, 2011, 21( 1): 64– 72
CrossRef Google scholar
[164]
Kang J W, Kang Y, Jung S. . Fully spray-coated inverted organic solar cells. Solar Energy Materials and Solar Cells, 2012, 103 : 76– 79
CrossRef Google scholar
[165]
Wang T, Scarratt N W, Yi H. . Fabricating high performance, donor-acceptor copolymer solar cells by spray-coating in air. Advanced Energy Materials, 2013, 3( 4): 505– 512
CrossRef Google scholar
[166]
Zhang Y, Griffin J, Scarratt N W. . High efficiency arrays of polymer solar cells fabricated by spray-coating in air. Progress in Photovoltaics: Research and Applications, 2016, 24( 3): 275– 282
CrossRef Google scholar
[167]
Barrows A T, Pearson A J, Kwak C K. . Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7( 9): 2944– 2950
CrossRef Google scholar
[168]
Das S, Yang B, Gu G. . High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics, 2015, 2( 6): 680– 686
CrossRef Google scholar
[169]
Tait J G, Manghooli S, Qiu W. . Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 10): 3792– 3797
CrossRef Google scholar
[170]
Huang H, Shi J, Zhu L. . Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 2016, 27 : 352– 358
CrossRef Google scholar
[171]
Heo J H, Lee M H, Jang M H. . Highly efficient CH3NH3PbI3–xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 45): 17636– 17642
CrossRef Google scholar
[172]
Mohamad D K, Griffin J, Bracher C. . Spray-cast multilayer organometal perovskite solar cells fabricated in air. Advanced Energy Materials, 2016, 6( 22): 1600994
CrossRef Google scholar
[173]
Bishop J E, Mohamad D K, Wong-Stringer M. . Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Scientific Reports, 2017, 7( 1): 7962
CrossRef Google scholar
[174]
Hu Z, Zhang J, Xiong S. . Performance of polymer solar cells fabricated by dip coating process. Solar Energy Materials and Solar Cells, 2012, 99 : 221– 225
CrossRef Google scholar
[175]
Hu Z, Zhang J, Xiong S. . Annealing-free, air-processed and high-efficiency polymer solar cells fabricated by a dip coating process. Organic Electronics, 2012, 13( 1): 142– 146
CrossRef Google scholar
[176]
Harun W S W, Asri R I M, Alias J. . A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 2018, 44( 2): 1250– 1268
CrossRef Google scholar
[177]
Aziz F, Ismail A F. Spray coating methods for polymer solar cells fabrication: a review. Materials Science in Semiconductor Processing, 2015, 39 : 416– 425
CrossRef Google scholar
[178]
Li L, Gao P, Schuermann K C. . Controllable growth and field-effect property of monolayer to multilayer microstripes of an organic semiconductor. Journal of the American Chemical Society, 2010, 132( 26): 8807– 8809
CrossRef Google scholar
[179]
Roland S, Pellerin C, Bazuin C G. . Evolution of small molecule content and morphology with dip-coating rate in supramolecular PS–P4VP thin films. Macromolecules, 2012, 45( 19): 7964– 7972
CrossRef Google scholar
[180]
Chou C S Chou F Kang J Y. Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells . Powder Technology, 2012, 215− 216: 215− 216
[181]
Adnan M, Lee J K. All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Scientific Reports, 2018, 8( 1): 2168
CrossRef Google scholar
[182]
Adnan M, Lee J K. Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Advances, 2020, 10( 9): 5454– 5461
CrossRef Google scholar
[183]
Adnan M, Irshad Z, Lee J K. Facile all-dip-coating deposition of highly efficient (CH3)3NPbI3–xClx perovskite materials from aqueous non-halide lead precursor. RSC Advances, 2020, 10( 48): 29010– 29017
CrossRef Google scholar
[184]
Gao T Jelle B P. Nanoelectrochromics for smart windows: materials and methodologies. In: Proceedings of the TechConnect World Innovation Conference 2016, Washington DC: USA, 2016
[185]
Razza S, Castro-Hermosa S, di Carlo A. . Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 2016, 4( 9): 091508
CrossRef Google scholar
[186]
Williams S T, Rajagopal A, Chueh C C. . Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. Journal of Physical Chemistry Letters, 2016, 7( 5): 811– 819
CrossRef Google scholar
[187]
Chen W, Wu Y, Yue Y. . Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350( 6263): 944– 948
CrossRef Google scholar
[188]
Cui Y, Yao H, Hong L. . Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 2020, 7( 7): 1239– 1246
CrossRef Google scholar
[189]
Yang M, Zhou Y, Zeng Y. . Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 2015, 27( 41): 6363– 6370
CrossRef Google scholar
[190]
Qiu W, Merckx T, Jaysankar M. . Pinhole-free perovskite films for efficient solar modules. Energy & Environmental Science, 2016, 9( 2): 484– 489
CrossRef Google scholar
[191]
Agresti A, Pescetelli S, Palma A L. . Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Letters, 2017, 2( 1): 279– 287
CrossRef Google scholar
[192]
Swartwout R, Hoerantner M T, Bulović V. Scalable deposition methods for large-area production of perovskite thin films. Energy & Environmental Materials, 2019, 2( 2): 119– 145
CrossRef Google scholar
[193]
Ding X, Liu J, Harris T A L. A review of the operating limits in slot die coating processes. AIChE Journal, 2016, 62( 7): 2508– 2524
CrossRef Google scholar
[194]
Carvalho M S, Kheshgi H S. Low-flow limit in slot coating: theory and experiments. AIChE Journal, 2000, 46( 10): 1907– 1917
CrossRef Google scholar
[195]
Patidar R, Burkitt D, Hooper K. . Slot-die coating of perovskite solar cells: an overview. Materials Today Communications, 2020, 22 : 100808
CrossRef Google scholar
[196]
Hwang K, Jung Y S, Heo Y J. . Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 2015, 27( 7): 1241– 1247
CrossRef Google scholar
[197]
di Giacomo F, Shanmugam S, Fledderus H. . Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 2018, 181 : 53– 59
CrossRef Google scholar
[198]
Burkitt D, Searle J, Watson T. Perovskite solar cells in NIP structure with four slot-die-coated layers. Royal Society Open Science, 2018, 5( 5): 172158
CrossRef Google scholar
[199]
Lee D, Jung Y S, Heo Y J. . Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells. ACS Applied Materials & Interfaces, 2018, 10( 18): 16133– 16139
CrossRef Google scholar
[200]
Heo Y J, Kim J E, Weerasinghe H. . Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy, 2017, 41 : 443– 451
CrossRef Google scholar
[201]
Kim Y Y, Park E Y, Yang T Y. . Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 26): 12447– 12454
CrossRef Google scholar
[202]
Dou B, Whitaker J B, Bruening K. . Roll-to-roll printing of perovskite solar cells. ACS Energy Letters, 2018, 3( 10): 2558– 2565
CrossRef Google scholar
[203]
Yang Z, Chueh C C, Zuo F. . High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Advanced Energy Materials, 2015, 5( 13): 1500328
CrossRef Google scholar
[204]
Qiao F, Xie Y, He G. . Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells. Nanoscale, 2020, 12( 3): 1269– 1280
CrossRef Google scholar
[205]
Zhao J, Green M A. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Transactions on Electron Devices, 1991, 38( 8): 1925– 1934
CrossRef Google scholar
[206]
Xi J Q, Schubert M F, Kim J K. . Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photonics, 2007, 1( 3): 176– 179
CrossRef Google scholar
[207]
Koynov S, Brandt M S, Stutzmann M. Black nonreflecting silicon surfaces for solar cells. Applied Physics Letters, 2006, 88( 20): 203107
CrossRef Google scholar
[208]
Huang Y, Chattopadhyay S, Jen Y J. . Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology, 2007, 2( 12): 770– 774
CrossRef Google scholar
[209]
Zhu J, Yu Z, Burkhard G F. . Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Letters, 2009, 9( 1): 279– 282
CrossRef Google scholar
[210]
Jeong S, Garnett E C, Wang S. . Hybrid silicon nanocone-polymer solar cells. Nano Letters, 2012, 12( 6): 2971– 2976
CrossRef Google scholar
[211]
Tsakalakos L, Balch J, Fronheiser J. . Silicon nanowire solar cells. Applied Physics Letters, 2007, 91( 23): 233117
CrossRef Google scholar
[212]
Fan Z, Kapadia R, Leu P W. . Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Letters, 2010, 10( 10): 3823– 3827
CrossRef Google scholar
[213]
Berger O, Inns D, Aberle A G. Commercial white paint as back surface reflector for thin-film solar cells. Solar Energy Materials and Solar Cells, 2007, 91( 13): 1215– 1221
CrossRef Google scholar
[214]
Ye L, Zhang Y, Zhang X. . Sol-gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 2013, 111 : 160– 164
CrossRef Google scholar
[215]
Chen J, Wang S, Sun Q. . Light-manipulation schemes: a facile solution-processed light manipulation structure for organic solar cells. Advanced Optical Materials, 2019, 7( 2): 1970006
CrossRef Google scholar
[216]
Liyanage W P R, Nath M. CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 38): 14637– 14648
CrossRef Google scholar
[217]
Zhuang T, Liu Y, Li Y. . Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angewandte Chemie International Edition, 2016, 55( 22): 6396– 6400
CrossRef Google scholar
[218]
Jošt M, Albrecht S, Kegelmann L. . Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics, 2017, 4( 5): 1232– 1239
CrossRef Google scholar
[219]
Myers J D, Cao W, Cassidy V. . A universal optical approach to enhancing efficiency of organic-based photovoltaic devices. Energy & Environmental Science, 2012, 5( 5): 6900
CrossRef Google scholar
[220]
Chen J, Jin T, Li Y. . Recent progress of light manipulation strategies in organic and perovskite solar cells. Nanoscale, 2019, 11( 40): 18517– 18536
CrossRef Google scholar
[221]
Day J, Senthilarasu S, Mallick T K. Improving spectral modification for applications in solar cells: a review. Renewable Energy, 2019, 132 : 186– 205
CrossRef Google scholar
[222]
Ali N M, Rafat N H. Modeling and simulation of nanorods photovoltaic solar cells: a review. Renewable & Sustainable Energy Reviews, 2017, 68 : 212– 220
CrossRef Google scholar
[223]
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9( 3): 205– 213
CrossRef Google scholar
[224]
Mandal P, Sharma S. Progress in plasmonic solar cell efficiency improvement: a status review. Renewable & Sustainable Energy Reviews, 2016, 65 : 537– 552
CrossRef Google scholar
[225]
Pala R A, White J, Barnard E. . Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21( 34): 3504– 3509
CrossRef Google scholar
[226]
Lee Y C, Huang C F, Chang J Y. . Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. Optics Express, 2008, 16( 11): 7969– 7975
CrossRef Google scholar
[227]
Chao C C, Wang C M, Chang Y C. . Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell. Optical Review, 2009, 16( 3): 343– 346
CrossRef Google scholar
[228]
Rockstuhl C, Fahr S, Lederer F. Absorption enhancement in solar cells by localized plasmon polaritons. Journal of Applied Physics, 2008, 104( 12): 123102
CrossRef Google scholar
[229]
Bai W, Gan Q, Bartoli F. . Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Optics Letters, 2009, 34( 23): 3725
CrossRef Google scholar
[230]
Ferry V E, Verschuuren M A, Li H B T. . Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 2009, 95( 18): 183503
CrossRef Google scholar
[231]
Sai H, Fujiwara H, Kondo M. Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93( 6−7): 1087– 1090
CrossRef Google scholar
[232]
Mokkapati S, Beck F J, Polman A. . Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Applied Physics Letters, 2009, 95( 5): 053115
CrossRef Google scholar
[233]
Mendes M J, Morawiec S, Simone F. . Colloidal plasmonic back reflectors for light trapping in solar cells. Nanoscale, 2014, 6( 9): 4796– 4805
CrossRef Google scholar
[234]
Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93( 12): 121904
CrossRef Google scholar
[235]
Skrabalak S E, Chen J, Sun Y. . Gold nanocages: synthesis, properties, and applications. Accounts of Chemical Research, 2008, 41( 12): 1587– 1595
CrossRef Google scholar
[236]
Lee D S, Kim W, Cha B G. . Self-position of Au NPs in perovskite solar cells: optical and electrical contribution. ACS Applied Materials & Interfaces, 2016, 8( 1): 449– 454
CrossRef Google scholar
[237]
Yuan Z, Wu Z, Bai S. . Perovskite solar cells: hot-electron injection in a sandwiched TiOx-Au-TiOx structure for high-performance planar perovskite solar cells. Advanced Energy Materials, 2015, 5( 10): 1500038
CrossRef Google scholar
[238]
Reineck P, Brick D, Mulvaney P. . Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. Journal of Physical Chemistry Letters, 2016, 7( 20): 4137– 4141
CrossRef Google scholar
[239]
Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters, 2005, 86( 6): 063106
CrossRef Google scholar
[240]
Xu Z, Lin Y, Yin M. . Nanotubes: understanding the enhancement mechanisms of surface plasmon-mediated photoelectrochemical electrodes: a case study on Au nanoparticle decorated TiO2 nanotubes. Advanced Materials Interfaces, 2015, 2( 13): 1500169
CrossRef Google scholar
[241]
Chen S, Wang Y, Liu Q. . Broadband enhancement of PbS quantum dot solar cells by the synergistic effect of plasmonic gold nanobipyramids and nanospheres. Advanced Energy Materials, 2018, 8( 8): 1701194
CrossRef Google scholar
[242]
Srivastava A, Samajdar D P, Sharma D. Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review. Solar Energy, 2018, 173 : 905– 919
CrossRef Google scholar
[243]
Edinbarough I. Experimental study on the optimum harvesting of sunlight for an efficient solar energy system. In: 2013 ASEE Annual Conference & Exposition Proceedings, Atlanta, Georgia, USA, 2013
[244]
Kvasznicza Z Elmer G. Optimizing solar tracking systems for solar cells. In: Proceeding of 4th Serbian–Hungarian joint Symposium on Intelligent Systems, 2006
[245]
Mousazadeh H, Keyhani A, Javadi A. . A review of principle and sun-tracking methods for maximizing solar systems output. Renewable & Sustainable Energy Reviews, 2009, 13( 8): 1800– 1818
CrossRef Google scholar
[246]
Luque-Heredia I Moreno J Magalhaes P. Inspira’s CPV sun tracking. In: Luque, A L, Andreev V M, eds. Concentrator Photovoltaics. Berlin, Heidelberg: Springer, 2007
[247]
García-Segura A, Fernández-García A, Ariza M J. . Durability studies of solar reflectors: a review. Renewable & Sustainable Energy Reviews, 2016, 62 : 453– 467
CrossRef Google scholar
[248]
Wiesinger F, Sutter F, Fernández-García A. . Sand erosion on solar reflectors: accelerated simulation and comparison with field data. Solar Energy Materials and Solar Cells, 2016, 145 : 303– 313
CrossRef Google scholar
[249]
Kennedy C E, Terwilliger K. Optical durability of candidate solar reflectors. Journal of Solar Energy Engineering, 2005, 127( 2): 262– 269
CrossRef Google scholar
[250]
Kennedy C E Terwilliger K Jorgensen G J. Analysis of accelerated exposure testing of thin-glass mirror matrix. In: Proceedings of ASME 2005 International Solar Energy Conference, Orlando, Florida, USA, 2008
[251]
Almanza R, Hernández P, Martínez I. . Development and mean life of aluminum first-surface mirrors for solar energy applications. Solar Energy Materials and Solar Cells, 2009, 93( 9): 1647– 1651
CrossRef Google scholar
[252]
Price H, Lu¨pfert E, Kearney D. . Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering, 2002, 124( 2): 109– 125
CrossRef Google scholar
[253]
Xie W T, Dai Y J, Wang R Z. . Concentrated solar energy applications using Fresnel lenses: a review. Renewable & Sustainable Energy Reviews, 2011, 15( 6): 2588– 2606
CrossRef Google scholar
[254]
Kumar V, Shrivastava R L, Untawale S P. Fresnel lens: a promising alternative of reflectors in concentrated solar power. Renewable & Sustainable Energy Reviews, 2015, 44 : 376– 390
CrossRef Google scholar
[255]
Miller D C, Kurtz S R. Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application. Solar Energy Materials and Solar Cells, 2011, 95( 8): 2037– 2068
CrossRef Google scholar

Acknowledgment

This work was supported by an NPRP grant from Qatar National Research Fund under the grant number NPRP12S-0131-190030. The statements made herein are solely the responsibility of the authors.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(12722 KB)

Accesses

Citations

Detail

Sections
Recommended

/