A review on high performance photovoltaic cells and strategies for improving their efficiency
Muni Raj MAURYA, John-John CABIBIHAN, Kishor Kumar SADASIVUNI, Kalim DESHMUKH
A review on high performance photovoltaic cells and strategies for improving their efficiency
The introduction of a practical solar cell by Bell Laboratory, which had an efficiency of approximately 6%, signified photovoltaic technology as a potentially viable energy source. Continuous efforts have been made to increase power conversion efficiency (PCE). In the present review, the advances made in solar cells (SCs) are summarized. Material and device engineering are described for achieving enhanced light absorption, electrical properties, stability and higher PCE in SCs. The strategies in materials and coating techniques for large area deposition are further elaborated, which is expected to be helpful for realizing high-efficiency SCs. The methods of light-harvesting in SCs via anti-reflecting coatings, surface texturing, patterned growth of nanostructure, and plasmonics are discussed. Moreover, progress in mechanical methods that are used for sun tracking are elaborated. The assistance of the above two protocols in maximizing the power output of SCs are discussed in detail. Finally, further research efforts needed to overcome roadblocks in commercialization were highlighted and perspectives on the future development of this rapidly advancing field are offered.
photovoltaic / efficiency / large area deposition / light harvesting / sun tracker
[1] |
Rapier R. Fossil fuels still supply 84 percent of world energy—and other eye openers from BP’s annual review. 2020, available at the website of forbes.com
|
[2] |
Shaikh J S, Shaikh N S, Sheikh A D.
CrossRef
Google scholar
|
[3] |
Becquerel M E. On electrod effect under the influence of solar radiation. Proceedings of the Academy of Science, 1839, 9: 561− 567 (in French)
|
[4] |
Xu T, Yu L. How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17( 1): 11– 15
CrossRef
Google scholar
|
[5] |
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32( 3): 510– 519
CrossRef
Google scholar
|
[6] |
Sze S Ng K K. Physics of Semiconductor Devices. Wiley Online Books, 2006
|
[7] |
Singh P, Ravindra N M. Temperature dependence of solar cell performance—an analysis. Solar Energy Materials and Solar Cells, 2012, 101 : 36– 45
CrossRef
Google scholar
|
[8] |
Qi B, Wang J. Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15( 23): 8972
CrossRef
Google scholar
|
[9] |
Guo X, Zhou N, Lou S J.
CrossRef
Google scholar
|
[10] |
You J, Dou L, Hong Z.
CrossRef
Google scholar
|
[11] |
You J, Chen C, Hong Z.
CrossRef
Google scholar
|
[12] |
Fan X, Guo S, Fang G.
CrossRef
Google scholar
|
[13] |
Zhao D, Tang W, Ke L.
CrossRef
Google scholar
|
[14] |
Guo Z, Lee D, Schaller R D.
CrossRef
Google scholar
|
[15] |
Kim J, Yun M H, Kim G H.
CrossRef
Google scholar
|
[16] |
Chen H Y, Lin S, Sun J Y.
CrossRef
Google scholar
|
[17] |
An T K, Kang I, Yun H.
CrossRef
Google scholar
|
[18] |
Guan Z, Yu J, Huang J.
CrossRef
Google scholar
|
[19] |
Tan M J, Zhong S, Li J.
CrossRef
Google scholar
|
[20] |
Elumalai N K, Vijila C, Jose R.
CrossRef
Google scholar
|
[21] |
Tan Z, Li S, Wang F.
CrossRef
Google scholar
|
[22] |
Lu L, Yu L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Advanced Materials, 2014, 26( 26): 4413– 4430
CrossRef
Google scholar
|
[23] |
Wysocki J J, Rappaport P. Effect of temperature on photovoltaic solar energy conversion. Journal of Applied Physics, 1960, 31( 3): 571– 578
CrossRef
Google scholar
|
[24] |
Fan J C C. Theoretical temperature dependence of solar cell parameters. Solar Cells, 1986, 17( 2−3): 309– 315
CrossRef
Google scholar
|
[25] |
Singh P, Singh S N, Lal M.
CrossRef
Google scholar
|
[26] |
Goetzberger A, Hebling C. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 2000, 62( 1−2): 1– 19
CrossRef
Google scholar
|
[27] |
Hosenuzzaman M, Rahim N A, Selvaraj J.
CrossRef
Google scholar
|
[28] |
Subtil Lacerda J, van den Bergh J C J M. Diversity in solar photovoltaic energy: implications for innovation and policy. Renewable & Sustainable Energy Reviews, 2016, 54 : 331– 340
CrossRef
Google scholar
|
[29] |
Yoshikawa K, Kawasaki H, Yoshida W.
CrossRef
Google scholar
|
[30] |
Peng J, Lu L, Yang H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable & Sustainable Energy Reviews, 2013, 19 : 255– 274
CrossRef
Google scholar
|
[31] |
Tyagi V V, Rahim N A A, Rahim N A.
CrossRef
Google scholar
|
[32] |
Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering R Reports, 2003, 40( 1): 1– 46
CrossRef
Google scholar
|
[33] |
Miles R W, Hynes K M, Forbes I. Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials, 2005, 51( 1−3): 1– 42
CrossRef
Google scholar
|
[34] |
El Chaar L, lamont L A, El Zein N. Review of photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15( 5): 2165– 2175
CrossRef
Google scholar
|
[35] |
Avrutin V, Izyumskaya N, Morkoç H. Semiconductor solar cells: recent progress in terrestrial applications. Superlattices and Microstructures, 2011, 49( 4): 337– 364
CrossRef
Google scholar
|
[36] |
Green M A, Dunlop E D, Hohl-Ebinger J.
CrossRef
Google scholar
|
[37] |
Braga A F B, Moreira S P, Zampieri P R.
CrossRef
Google scholar
|
[38] |
Bruton T M. General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 2002, 72( 1-4): 3– 10
CrossRef
Google scholar
|
[39] |
van der Zwaan B, Rabl A. Prospects for PV: a learning curve analysis. Solar Energy, 2003, 74( 1): 19– 31
CrossRef
Google scholar
|
[40] |
Keogh W M, Blakers A W. Accurate measurement, using natural sunlight, of silicon solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12( 1): 1– 19
CrossRef
Google scholar
|
[41] |
Hanoka J I. An overview of silicon ribbon growth technology. Solar Energy Materials and Solar Cells, 2001, 65( 1−4): 231– 237
CrossRef
Google scholar
|
[42] |
Peng K, Lee S T. Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials, 2011, 23( 2): 198– 215
CrossRef
Google scholar
|
[43] |
Gangopadhyay U, Jana S, Das S. State of art of solar photovoltaic technology. Conference Papers in Energy, 2013, 2013 : 764132
CrossRef
Google scholar
|
[44] |
Mundo-Hernández J, de Celis Alonso B, Hernández-Álvarez J.
CrossRef
Google scholar
|
[45] |
Boutchich M, Alvarez J, Diouf D.
CrossRef
Google scholar
|
[46] |
Subhan F E, Khan A D, Hilal F E.
CrossRef
Google scholar
|
[47] |
Matsui T, Bidiville A, Maejima K.
CrossRef
Google scholar
|
[48] |
Sai H, Matsui T, Kumagai H.
CrossRef
Google scholar
|
[49] |
Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993, 62( 22): 2851– 2852
CrossRef
Google scholar
|
[50] |
Cdte C, Solar P, Wu X.
|
[51] |
Aberle A G. Thin-film solar cells. Thin Solid Films, 2009, 517( 17): 4706– 4710
CrossRef
Google scholar
|
[52] |
Powalla M, Bonnet D. Thin-film solar cells based on the polycrystalline compound semiconductors CIS and CdTe. Advances in OptoElectronics, 2007, 2007 : 097545
CrossRef
Google scholar
|
[53] |
Wang D, Yang R, Wu L.
CrossRef
Google scholar
|
[54] |
Kazmerski L L, White F R, Morgan G K. Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters, 1976, 29( 4): 268– 270
CrossRef
Google scholar
|
[55] |
Mickelsen R A, Chen W S. Development of a 9.4% efficiency thin-film CulnSe2/CdS solar cell. In: Proceeding of Photovoltaic Specialists Conference, Institute of Electronics Engineers, 1981,
|
[56] |
Wang Y C, Shieh H P D. Double-graded bandgap in Cu(In, Ga)Se2 thin film solar cells by low toxicity selenization process. Applied Physics Letters, 2014, 105( 7): 073901
CrossRef
Google scholar
|
[57] |
Cui X, Yun D, Zhong C.
CrossRef
Google scholar
|
[58] |
Reinhard P, Pianezzi F, Bissig B.
CrossRef
Google scholar
|
[59] |
Fischer J, Larsen J K, Guillot J.
CrossRef
Google scholar
|
[60] |
Rampino S, Armani N, Bissoli F.
CrossRef
Google scholar
|
[61] |
Nakada T. Invited Paper: CIGS-based thin film solar cells and modules: unique material properties. Electronic Materials Letters, 2012, 8( 2): 179– 185
CrossRef
Google scholar
|
[62] |
Kapur V Kemmerle R Bansal A. Manufacturing of ‘ink based’ CIGS solar cells/modules. In: 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 2008
|
[63] |
Romeo A, Terheggen M, Abou-Ras D.
CrossRef
Google scholar
|
[64] |
Ramanathan K, Contreras M A, Perkins C L.
CrossRef
Google scholar
|
[65] |
Guillemoles J F. The puzzle of Cu(In, Ga)Se2 (CIGS) solar cells stability . Thin Solid Films, 2002, 403− 404: 403− 404
|
[66] |
Dhere N G. Present status and future prospects of CIGSS thin film solar cells. Solar Energy Materials and Solar Cells, 2006, 90( 15): 2181– 2190
CrossRef
Google scholar
|
[67] |
Rau U, Schock H W. Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics. A, Materials Science & Processing, 1999, 69( 2): 131– 147
CrossRef
Google scholar
|
[68] |
Hanna G, Jasenek A, Rau U.
CrossRef
Google scholar
|
[69] |
Singh U P, Patra S P. Progress in polycrystalline thin-film Cu(In, Ga). International Journal of Photoenergy, 2010, 2010 : 468147
CrossRef
Google scholar
|
[70] |
Hiroi H, Iwata Y, Adachi S.
CrossRef
Google scholar
|
[71] |
Nakamura M Kouji Y Chiba Y. Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer . In: 2013 IEEE 39th Photovoltaic Specialists Conference. Tampa, FL, USA, 2013
|
[72] |
Kobayashi T, Yamaguchi H, Nakada T. Effects of combined heat and light soaking on device performance of Cu(In, Ga)Se2solar cells with ZnS(O, OH) buffer layer. Progress in Photovoltaics: Research and Applications, 2014, 22( 1): 115– 121
CrossRef
Google scholar
|
[73] |
Kamada R Yagioka T Adachi S. New world record Cu(In, Ga)(Se, S)2 thin film solar cell efficiency beyond 22% . In: 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016
|
[74] |
Nakamura M, Yamaguchi K, Kimoto Y.
CrossRef
Google scholar
|
[75] |
Yin W, Yang J, Kang J.
CrossRef
Google scholar
|
[76] |
Ramanujam J, Singh U P. Copper indium gallium selenide based solar cells—a review. Energy & Environmental Science, 2017, 10( 6): 1306– 1319
CrossRef
Google scholar
|
[77] |
Li G, Shrotriya V, Huang J.
CrossRef
Google scholar
|
[78] |
Liang Y, Wu Y, Feng D.
CrossRef
Google scholar
|
[79] |
Huo L, Zhang S, Guo X.
CrossRef
Google scholar
|
[80] |
Liao S H, Jhuo H J, Yeh P N.
CrossRef
Google scholar
|
[81] |
Zhao J, Li Y, Yang G.
CrossRef
Google scholar
|
[82] |
Bin H, Gao L, Zhang Z.
CrossRef
Google scholar
|
[83] |
Fei Z, Eisner F D, Jiao X.
CrossRef
Google scholar
|
[84] |
Zhang S, Qin Y, Zhu J.
CrossRef
Google scholar
|
[85] |
Cui Y, Yao H, Yang C.
|
[86] |
Meng L, Zhang Y, Wan X.
CrossRef
Google scholar
|
[87] |
Xue R, Zhang J, Li Y.
CrossRef
Google scholar
|
[88] |
di Carlo Rasi D, Janssen R A J. Advances in solution-processed multijunction organic solar cells. Advanced Materials, 2019, 31( 10): 1806499
CrossRef
Google scholar
|
[89] |
Zhang C, Wang G, Han H.
CrossRef
Google scholar
|
[90] |
Chen W, Zhang Q. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5( 6): 1275– 1302
CrossRef
Google scholar
|
[91] |
Chen W, Yang X, Long G.
CrossRef
Google scholar
|
[92] |
Sun H, Song X, Xie J.
CrossRef
Google scholar
|
[93] |
Li C, Zhou J, Song J.
CrossRef
Google scholar
|
[94] |
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353( 6346): 737– 740
CrossRef
Google scholar
|
[95] |
Yeoh M E, Chan K Y. Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research, 2017, 41( 15): 2446– 2467
CrossRef
Google scholar
|
[96] |
Mehmood U, Rahman S U, Harrabi K.
CrossRef
Google scholar
|
[97] |
Carella A, Borbone F, Centore R. Research progress on photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6 : 481
CrossRef
Google scholar
|
[98] |
Richhariya G, Kumar A, Tekasakul P.
CrossRef
Google scholar
|
[99] |
Wu J, Lan Z, Lin J.
CrossRef
Google scholar
|
[100] |
Iftikhar H, Sonai G G, Hashmi S G.
CrossRef
Google scholar
|
[101] |
Zhao Y L, Yao D S, Song C B.
CrossRef
Google scholar
|
[102] |
Qiu Y, Chen W, Yang S. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angewandte Chemie International Edition, 2010, 49( 21): 3675– 3679
CrossRef
Google scholar
|
[103] |
Maheswari D, Venkatachalam P. Fabrication of high efficiency dye-sensitised solar cell with zirconia-doped TiO2 nanoparticle and nanowire composite photoanode film. Australian Journal of Chemistry, 2015, 68( 6): 881
CrossRef
Google scholar
|
[104] |
Huang Y, Wu H, Yu Q.
CrossRef
Google scholar
|
[105] |
Yella A, Lee H W, Tsao H N.
CrossRef
Google scholar
|
[106] |
Kyaw A K K, Tantang H, Wu T.
CrossRef
Google scholar
|
[107] |
Kyaw A K K, Tantang H, Wu T.
CrossRef
Google scholar
|
[108] |
Tantang H, Kyaw A K K, Zhao Y.
CrossRef
Google scholar
|
[109] |
Liu X, Yang Z, Chueh C C.
CrossRef
Google scholar
|
[110] |
Saliba M, Matsui T, Domanski K.
CrossRef
Google scholar
|
[111] |
Kojima A, Teshima K, Shirai Y.
CrossRef
Google scholar
|
[112] |
Jeong M, Choi I W, Go E M.
CrossRef
Google scholar
|
[113] |
Heo J H, Han H J, Kim D.
CrossRef
Google scholar
|
[114] |
Mali S S, Kim H, Kim H H.
CrossRef
Google scholar
|
[115] |
Chan S H, Wu M C, Lee K.
CrossRef
Google scholar
|
[116] |
Wu M C, Chan S H, Lee K.
CrossRef
Google scholar
|
[117] |
Chan S H, Chang Y H, Wu M C. High-performance perovskite solar cells based on low-temperature processed electron extraction layer. Frontiers in Materials, 2019, 6 : 57
CrossRef
Google scholar
|
[118] |
Dubey A, Adhikari N, Mabrouk S.
CrossRef
Google scholar
|
[119] |
Noh J H, Im S H, Heo J H.
CrossRef
Google scholar
|
[120] |
Im J H, Lee C R, Lee J W.
CrossRef
Google scholar
|
[121] |
Kim H S, Lee C R, Im J H.
CrossRef
Google scholar
|
[122] |
Lee M M, Teuscher J, Miyasaka T.
CrossRef
Google scholar
|
[123] |
Wang J T W, Ball J M, Barea E M.
CrossRef
Google scholar
|
[124] |
Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8( 2): 133– 138
CrossRef
Google scholar
|
[125] |
Klug M T, Osherov A, Haghighirad A A.
CrossRef
Google scholar
|
[126] |
Abdelhady A L, Saidaminov M I, Murali B.
CrossRef
Google scholar
|
[127] |
Wang Z, Li M, Yang Y.
CrossRef
Google scholar
|
[128] |
Chang J, Lin Z, Zhu H.
CrossRef
Google scholar
|
[129] |
Wang J T W, Wang Z, Pathak S.
CrossRef
Google scholar
|
[130] |
van der Stam W, Geuchies J J, Altantzis T.
CrossRef
Google scholar
|
[131] |
Kour R, Arya S, Verma S.
CrossRef
Google scholar
|
[132] |
Hao F, Stoumpos C C, Chang R P H.
CrossRef
Google scholar
|
[133] |
Zuo F, Williams S T, Liang P.
CrossRef
Google scholar
|
[134] |
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52( 15): 9019– 9038
CrossRef
Google scholar
|
[135] |
Babayigit A, Duy Thanh D, Ethirajan A.
CrossRef
Google scholar
|
[136] |
Kooijman M, Muscarella L A, Williams R M. Perovskite thin film materials stabilized and enhanced by zinc(II) doping. Applied Sciences (Basel, Switzerland), 2019, 9( 8): 1678
CrossRef
Google scholar
|
[137] |
Chen R, Hou D, Lu C.
CrossRef
Google scholar
|
[138] |
Zheng H, Liu G, Xu X.
CrossRef
Google scholar
|
[139] |
Shai X, Wang J, Sun P.
CrossRef
Google scholar
|
[140] |
Jung E H, Jeon N J, Park E Y.
CrossRef
Google scholar
|
[141] |
Said A A, Xie J, Zhang Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019, 15( 27): 1900854
CrossRef
Google scholar
|
[142] |
Gu P, Wang N, Wu A.
CrossRef
Google scholar
|
[143] |
Gu P, Wang N, Wang C.
CrossRef
Google scholar
|
[144] |
Jeong J, Kim M, Seo J.
CrossRef
Google scholar
|
[145] |
Tsakalakos L. Nanotechnology for Photovoltaics. New York: CRC Press, 2010
|
[146] |
Guha S. Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition. Solar Energy, 2004, 77( 6): 887– 892
CrossRef
Google scholar
|
[147] |
Yamaguchi M, Nishimura K I, Sasaki T.
CrossRef
Google scholar
|
[148] |
Takamoto T Washio H Juso H. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In: 2014 IEEE 40th Photovoltaic Specialist Conference, Denver, CO, USA, 2014
|
[149] |
Dimroth F, Tibbits T N D, Niemeyer M.
CrossRef
Google scholar
|
[150] |
Geisz J F, Steiner M A, Jain N.
CrossRef
Google scholar
|
[151] |
Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 2016, 34( 4): 485– 526
CrossRef
Google scholar
|
[152] |
Muteri V, Cellura M, Curto D.
CrossRef
Google scholar
|
[153] |
Andreani L C, Bozzola A, Kowalczewski P.
CrossRef
Google scholar
|
[154] |
Yang D, Zhang X, Hou Y.
CrossRef
Google scholar
|
[155] |
Al-Ashouri A, Köhnen E, Li B.
CrossRef
Google scholar
|
[156] |
Xu J, Boyd C C, Yu Z J.
CrossRef
Google scholar
|
[157] |
Hou Y, Aydin E, de Bastiani M.
CrossRef
Google scholar
|
[158] |
Chen B, Yu Z J, Manzoor S.
CrossRef
Google scholar
|
[159] |
Wang Z, Zhu X, Zuo S.
CrossRef
Google scholar
|
[160] |
Werner S, Lohmüller E, Maier S.
CrossRef
Google scholar
|
[161] |
Vak D, Kim S S, Jo J.
CrossRef
Google scholar
|
[162] |
Hoth C N, Steim R, Schilinsky P.
CrossRef
Google scholar
|
[163] |
Girotto C, Moia D, Rand B P.
CrossRef
Google scholar
|
[164] |
Kang J W, Kang Y, Jung S.
CrossRef
Google scholar
|
[165] |
Wang T, Scarratt N W, Yi H.
CrossRef
Google scholar
|
[166] |
Zhang Y, Griffin J, Scarratt N W.
CrossRef
Google scholar
|
[167] |
Barrows A T, Pearson A J, Kwak C K.
CrossRef
Google scholar
|
[168] |
Das S, Yang B, Gu G.
CrossRef
Google scholar
|
[169] |
Tait J G, Manghooli S, Qiu W.
CrossRef
Google scholar
|
[170] |
Huang H, Shi J, Zhu L.
CrossRef
Google scholar
|
[171] |
Heo J H, Lee M H, Jang M H.
CrossRef
Google scholar
|
[172] |
Mohamad D K, Griffin J, Bracher C.
CrossRef
Google scholar
|
[173] |
Bishop J E, Mohamad D K, Wong-Stringer M.
CrossRef
Google scholar
|
[174] |
Hu Z, Zhang J, Xiong S.
CrossRef
Google scholar
|
[175] |
Hu Z, Zhang J, Xiong S.
CrossRef
Google scholar
|
[176] |
Harun W S W, Asri R I M, Alias J.
CrossRef
Google scholar
|
[177] |
Aziz F, Ismail A F. Spray coating methods for polymer solar cells fabrication: a review. Materials Science in Semiconductor Processing, 2015, 39 : 416– 425
CrossRef
Google scholar
|
[178] |
Li L, Gao P, Schuermann K C.
CrossRef
Google scholar
|
[179] |
Roland S, Pellerin C, Bazuin C G.
CrossRef
Google scholar
|
[180] |
Chou C S Chou F Kang J Y. Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells . Powder Technology, 2012, 215− 216: 215− 216
|
[181] |
Adnan M, Lee J K. All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Scientific Reports, 2018, 8( 1): 2168
CrossRef
Google scholar
|
[182] |
Adnan M, Lee J K. Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Advances, 2020, 10( 9): 5454– 5461
CrossRef
Google scholar
|
[183] |
Adnan M, Irshad Z, Lee J K. Facile all-dip-coating deposition of highly efficient (CH3)3NPbI3–xClx perovskite materials from aqueous non-halide lead precursor. RSC Advances, 2020, 10( 48): 29010– 29017
CrossRef
Google scholar
|
[184] |
Gao T Jelle B P. Nanoelectrochromics for smart windows: materials and methodologies. In: Proceedings of the TechConnect World Innovation Conference 2016, Washington DC: USA, 2016
|
[185] |
Razza S, Castro-Hermosa S, di Carlo A.
CrossRef
Google scholar
|
[186] |
Williams S T, Rajagopal A, Chueh C C.
CrossRef
Google scholar
|
[187] |
Chen W, Wu Y, Yue Y.
CrossRef
Google scholar
|
[188] |
Cui Y, Yao H, Hong L.
CrossRef
Google scholar
|
[189] |
Yang M, Zhou Y, Zeng Y.
CrossRef
Google scholar
|
[190] |
Qiu W, Merckx T, Jaysankar M.
CrossRef
Google scholar
|
[191] |
Agresti A, Pescetelli S, Palma A L.
CrossRef
Google scholar
|
[192] |
Swartwout R, Hoerantner M T, Bulović V. Scalable deposition methods for large-area production of perovskite thin films. Energy & Environmental Materials, 2019, 2( 2): 119– 145
CrossRef
Google scholar
|
[193] |
Ding X, Liu J, Harris T A L. A review of the operating limits in slot die coating processes. AIChE Journal, 2016, 62( 7): 2508– 2524
CrossRef
Google scholar
|
[194] |
Carvalho M S, Kheshgi H S. Low-flow limit in slot coating: theory and experiments. AIChE Journal, 2000, 46( 10): 1907– 1917
CrossRef
Google scholar
|
[195] |
Patidar R, Burkitt D, Hooper K.
CrossRef
Google scholar
|
[196] |
Hwang K, Jung Y S, Heo Y J.
CrossRef
Google scholar
|
[197] |
di Giacomo F, Shanmugam S, Fledderus H.
CrossRef
Google scholar
|
[198] |
Burkitt D, Searle J, Watson T. Perovskite solar cells in NIP structure with four slot-die-coated layers. Royal Society Open Science, 2018, 5( 5): 172158
CrossRef
Google scholar
|
[199] |
Lee D, Jung Y S, Heo Y J.
CrossRef
Google scholar
|
[200] |
Heo Y J, Kim J E, Weerasinghe H.
CrossRef
Google scholar
|
[201] |
Kim Y Y, Park E Y, Yang T Y.
CrossRef
Google scholar
|
[202] |
Dou B, Whitaker J B, Bruening K.
CrossRef
Google scholar
|
[203] |
Yang Z, Chueh C C, Zuo F.
CrossRef
Google scholar
|
[204] |
Qiao F, Xie Y, He G.
CrossRef
Google scholar
|
[205] |
Zhao J, Green M A. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Transactions on Electron Devices, 1991, 38( 8): 1925– 1934
CrossRef
Google scholar
|
[206] |
Xi J Q, Schubert M F, Kim J K.
CrossRef
Google scholar
|
[207] |
Koynov S, Brandt M S, Stutzmann M. Black nonreflecting silicon surfaces for solar cells. Applied Physics Letters, 2006, 88( 20): 203107
CrossRef
Google scholar
|
[208] |
Huang Y, Chattopadhyay S, Jen Y J.
CrossRef
Google scholar
|
[209] |
Zhu J, Yu Z, Burkhard G F.
CrossRef
Google scholar
|
[210] |
Jeong S, Garnett E C, Wang S.
CrossRef
Google scholar
|
[211] |
Tsakalakos L, Balch J, Fronheiser J.
CrossRef
Google scholar
|
[212] |
Fan Z, Kapadia R, Leu P W.
CrossRef
Google scholar
|
[213] |
Berger O, Inns D, Aberle A G. Commercial white paint as back surface reflector for thin-film solar cells. Solar Energy Materials and Solar Cells, 2007, 91( 13): 1215– 1221
CrossRef
Google scholar
|
[214] |
Ye L, Zhang Y, Zhang X.
CrossRef
Google scholar
|
[215] |
Chen J, Wang S, Sun Q.
CrossRef
Google scholar
|
[216] |
Liyanage W P R, Nath M. CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 38): 14637– 14648
CrossRef
Google scholar
|
[217] |
Zhuang T, Liu Y, Li Y.
CrossRef
Google scholar
|
[218] |
Jošt M, Albrecht S, Kegelmann L.
CrossRef
Google scholar
|
[219] |
Myers J D, Cao W, Cassidy V.
CrossRef
Google scholar
|
[220] |
Chen J, Jin T, Li Y.
CrossRef
Google scholar
|
[221] |
Day J, Senthilarasu S, Mallick T K. Improving spectral modification for applications in solar cells: a review. Renewable Energy, 2019, 132 : 186– 205
CrossRef
Google scholar
|
[222] |
Ali N M, Rafat N H. Modeling and simulation of nanorods photovoltaic solar cells: a review. Renewable & Sustainable Energy Reviews, 2017, 68 : 212– 220
CrossRef
Google scholar
|
[223] |
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9( 3): 205– 213
CrossRef
Google scholar
|
[224] |
Mandal P, Sharma S. Progress in plasmonic solar cell efficiency improvement: a status review. Renewable & Sustainable Energy Reviews, 2016, 65 : 537– 552
CrossRef
Google scholar
|
[225] |
Pala R A, White J, Barnard E.
CrossRef
Google scholar
|
[226] |
Lee Y C, Huang C F, Chang J Y.
CrossRef
Google scholar
|
[227] |
Chao C C, Wang C M, Chang Y C.
CrossRef
Google scholar
|
[228] |
Rockstuhl C, Fahr S, Lederer F. Absorption enhancement in solar cells by localized plasmon polaritons. Journal of Applied Physics, 2008, 104( 12): 123102
CrossRef
Google scholar
|
[229] |
Bai W, Gan Q, Bartoli F.
CrossRef
Google scholar
|
[230] |
Ferry V E, Verschuuren M A, Li H B T.
CrossRef
Google scholar
|
[231] |
Sai H, Fujiwara H, Kondo M. Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93( 6−7): 1087– 1090
CrossRef
Google scholar
|
[232] |
Mokkapati S, Beck F J, Polman A.
CrossRef
Google scholar
|
[233] |
Mendes M J, Morawiec S, Simone F.
CrossRef
Google scholar
|
[234] |
Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93( 12): 121904
CrossRef
Google scholar
|
[235] |
Skrabalak S E, Chen J, Sun Y.
CrossRef
Google scholar
|
[236] |
Lee D S, Kim W, Cha B G.
CrossRef
Google scholar
|
[237] |
Yuan Z, Wu Z, Bai S.
CrossRef
Google scholar
|
[238] |
Reineck P, Brick D, Mulvaney P.
CrossRef
Google scholar
|
[239] |
Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters, 2005, 86( 6): 063106
CrossRef
Google scholar
|
[240] |
Xu Z, Lin Y, Yin M.
CrossRef
Google scholar
|
[241] |
Chen S, Wang Y, Liu Q.
CrossRef
Google scholar
|
[242] |
Srivastava A, Samajdar D P, Sharma D. Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review. Solar Energy, 2018, 173 : 905– 919
CrossRef
Google scholar
|
[243] |
Edinbarough I. Experimental study on the optimum harvesting of sunlight for an efficient solar energy system. In: 2013 ASEE Annual Conference & Exposition Proceedings, Atlanta, Georgia, USA, 2013
|
[244] |
Kvasznicza Z Elmer G. Optimizing solar tracking systems for solar cells. In: Proceeding of 4th Serbian–Hungarian joint Symposium on Intelligent Systems, 2006
|
[245] |
Mousazadeh H, Keyhani A, Javadi A.
CrossRef
Google scholar
|
[246] |
Luque-Heredia I Moreno J Magalhaes P. Inspira’s CPV sun tracking. In: Luque, A L, Andreev V M, eds. Concentrator Photovoltaics. Berlin, Heidelberg: Springer, 2007
|
[247] |
García-Segura A, Fernández-García A, Ariza M J.
CrossRef
Google scholar
|
[248] |
Wiesinger F, Sutter F, Fernández-García A.
CrossRef
Google scholar
|
[249] |
Kennedy C E, Terwilliger K. Optical durability of candidate solar reflectors. Journal of Solar Energy Engineering, 2005, 127( 2): 262– 269
CrossRef
Google scholar
|
[250] |
Kennedy C E Terwilliger K Jorgensen G J. Analysis of accelerated exposure testing of thin-glass mirror matrix. In: Proceedings of ASME 2005 International Solar Energy Conference, Orlando, Florida, USA, 2008
|
[251] |
Almanza R, Hernández P, Martínez I.
CrossRef
Google scholar
|
[252] |
Price H, Lu¨pfert E, Kearney D.
CrossRef
Google scholar
|
[253] |
Xie W T, Dai Y J, Wang R Z.
CrossRef
Google scholar
|
[254] |
Kumar V, Shrivastava R L, Untawale S P. Fresnel lens: a promising alternative of reflectors in concentrated solar power. Renewable & Sustainable Energy Reviews, 2015, 44 : 376– 390
CrossRef
Google scholar
|
[255] |
Miller D C, Kurtz S R. Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application. Solar Energy Materials and Solar Cells, 2011, 95( 8): 2037– 2068
CrossRef
Google scholar
|
/
〈 | 〉 |