Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration

Xiaoshi QIAN

PDF(908 KB)
PDF(908 KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (1) : 19-22. DOI: 10.1007/s11708-022-0820-1
VIEWPOINT
VIEWPOINT

Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Xiaoshi QIAN. Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration. Front. Energy, 2022, 16(1): 19‒22 https://doi.org/10.1007/s11708-022-0820-1

References

[1]
ThibautA, ChiaraD. Is cooling the future of heating? 2020–12–13, available at website of iea gov
[2]
Abas N, Kalair A R, Khan N. Natural and synthetic refrigerants, global warming: a review. Renewable & Sustainable Energy Reviews, 2018, 90 : 557– 569
CrossRef Google scholar
[3]
HawkenP. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming. Penguin Books, 2018
[4]
Kobeco P, Kurtchatov I V. Dielectric properties of Rochelle salt crystal. Zeitschrift für Physik, 1930, 66 : 192– 205
[5]
Mischenko A S, Zhang Q, Scott J F. Electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311( 5765): 1270– 1271
CrossRef Google scholar
[6]
Neese B, Chu B, Lu S G. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321( 5890): 821– 823
CrossRef Google scholar
[7]
Qian X S, Lu S G, Li X. Large electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Advanced Functional Materials, 2013, 23( 22): 2894– 2898
CrossRef Google scholar
[8]
Shi J, Han D, Li Z. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3( 5): 1200– 1225
CrossRef Google scholar
[9]
Crossley S, Usui T, Nair B. Direct electrocaloric measurement of 0. 9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 films using scanning thermal microscopy. Applied Physics Letters, 2016, 108( 3): 032902–
CrossRef Google scholar
[10]
Hou Y, Yang L, Qian X. Electrocaloric response near room temperature in Zr- and Sn-doped BaTiO3 systems. Philosophical Transactions–Royal Society. Mathematical, Physical, and Engineering Sciences, 2016, 374( 2074): 20160055–
CrossRef Google scholar
[11]
Moya X, Stern-Taulats E, Crossley S. Giant electrocaloric strength in single-crystal BaTiO3. Advanced Materials, 2013, 25( 9): 1360– 1365
CrossRef Google scholar
[12]
Chen X Z, Li X, Qian X S. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer, 2013, 54( 20): 5299– 5302
CrossRef Google scholar
[13]
Qian X S, Ye H J, Zhang Y T. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24( 9): 1300– 1305
CrossRef Google scholar
[14]
Nair B, Usui T, Crossley S. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575( 7783): 468– 472
CrossRef Google scholar
[15]
Yang L, Qian X, Koo C. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy, 2016, 22 : 461– 467
CrossRef Google scholar
[16]
Chen Y, Qian J, Yu J. An all-scale hierarchical architecture induces colossal room–temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32( 30): 1907927–
CrossRef Google scholar
[17]
Ma R, Zhang Z, Tong K. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357( 6356): 1130– 1134
CrossRef Google scholar
[18]
Meng Y, Zhang Z, Wu H. A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 2020, 5( 12): 996– 1002
CrossRef Google scholar
[19]
Gu H, Qian X, Li X. A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102( 12): 122904–
CrossRef Google scholar
[20]
Annapragada, S. R. High-efficiency solid-state heat pump module. 2017, available at website of energy gov
[21]
Wang Y, Zhang Z, Usui T. A high-performance solid-state electrocaloric cooling system. Science, 2020, 370( 6512): 129– 133
CrossRef Google scholar
[22]
Torelló A, Lheritier P, Usui T. Giant temperature span in electrocaloric regenerator. Science, 2020, 370( 6512): 125– 129
CrossRef Google scholar
[23]
Cui H, Zhang Q, Bo Y. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule, 2022, 6( 1): 258– 268
CrossRef Google scholar
[24]
Hoyt T, Arens E, Zhang H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 2015, 88 : 89– 96
CrossRef Google scholar
[25]
Li Q, Shi J, Han D. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device. Applied Thermal Engineering, 2021, 190 : 116806–
CrossRef Google scholar
[26]
Shi J, Li Q, Gao T. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2021, 121 : 279– 288
CrossRef Google scholar
[27]
Peng B, Zhang Q, Lyu Y. Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nano Energy, 2018, 47 : 285– 293
CrossRef Google scholar
[28]
Qian X, Han D, Zheng L. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600( 7890): 664– 669
CrossRef Google scholar
[29]
Qian X, Ye H J, Yang T. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Advanced Functional Materials, 2015, 25( 32): 5134– 5139
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press 2022.
AI Summary AI Mindmap
PDF(908 KB)

Accesses

Citations

Detail

Sections
Recommended

/