PDF
(2933KB)
Abstract
Cold-end systems are heat sinks of thermal power cycles, which have an essential effect on the overall performance of thermal power plants. To enhance the efficiency of thermal power plants, multi-pressure condensers have been applied in some large-capacity thermal power plants. However, little attention has been paid to the optimization of the cold-end system with multi-pressure condensers which have multiple parameters to be identified. Therefore, the design optimization methods of cold-end systems with single- and multi-pressure condensers are developed based on the entropy generation rate, and the genetic algorithm (GA) is used to optimize multiple parameters. Multiple parameters, including heat transfer area of multi-pressure condensers, steam distribution in condensers, and cooling water mass flow rate, are optimized while considering detailed entropy generation rate of the cold-end systems. The results show that the entropy generation rate of the multi-pressure cold-end system is less than that of the single-pressure cold-end system when the total condenser area is constant. Moreover, the economic performance can be improved with the adoption of the multi-pressure cold-end system. When compared with the single-pressure cold-end system, the excess revenues gained by using dual- and quadruple-pressure cold-end systems are 575 and 580 k$/a, respectively.
Graphical abstract
Keywords
cold-end system
/
entropy generation minimization
/
optimization
/
economic analysis
/
genetic algorithm (GA)
Cite this article
Download citation ▾
Yue FU, Yongliang ZHAO, Ming LIU, Jinshi WANG, Junjie YAN.
Optimization of cold-end system of thermal power plants based on entropy generation minimization.
Front. Energy, 2022, 16(6): 956-972 DOI:10.1007/s11708-021-0785-5
| [1] |
Yin J, Liu M, Zhao Y, Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation. Energy, 2021, 223: 120077
|
| [2] |
Liu R, Liu M, Zhao Y, Thermodynamic study of a novel lignite poly-generation system driven by solar energy. Energy, 2021, 214: 119075
|
| [3] |
Zhang Y L, Li J J, Liu H, Environmental, social, and economic assessment of energy utilization of crop residue in China. Frontiers in Energy, 2021, 15(2): 308–319
|
| [4] |
Zhang K, Liu M, Zhao Y, Entropy generation versus transition time of heat exchanger during transient processes. Energy, 2020, 200: 117490
|
| [5] |
Yan H, Li X, Liu M, Performance analysis of a solar-aided coal-fired power plant in off-design working conditions and dynamic process. Energy Conversion and Management, 2020, 220: 113059
|
| [6] |
Zou C Z, Feng H Y, Zhang Y P, Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation. Frontiers in Energy, 2019, 13(2): 284–295
|
| [7] |
Ye B Q, Zhang R, Cao J, Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system. Frontiers in Energy, 2020, 14(3): 590–606
|
| [8] |
Liu Q, Shang L L, Duan Y Y. Performance analyses of a hybrid geothermal-fossil power generation system using low-enthalpy geothermal resources. Applied Energy, 2016, 162: 149–162
|
| [9] |
Fateh L, Ahmed O, Amar O, Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system. Frontiers in Energy, 2016, 10(2): 155–163
|
| [10] |
Liu M, Zhang X, Yang K, Optimization and comparison on supercritical CO2 power cycles integrated within coal-fired power plants considering the hot and cold end characteristics. Energy Conversion and Management, 2019, 195: 854–865
|
| [11] |
Wang Z, Liu M, Zhao Y, Comparison on thermodynamic characteristics of single- and double- reheat boilers under off-design working conditions and during transient processes. Applied Thermal Engineering, 2020, 179: 115620
|
| [12] |
Wang Z, Liu M, Zhao Y, Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage. Energy, 2020, 201: 117594
|
| [13] |
Wang C, Liu M, Zhao Y, Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes. Energy, 2018, 145: 734–746
|
| [14] |
Ahmadi M H, Ahmadi M A, Aboukazempour E, Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance. Frontiers in Energy, 2019, 13(2): 399–410
|
| [15] |
Zhang H S, Zhao H B, Li Z L. Performance analysis of the coal-fired power plant with combined heat and power (CHP) based on absorption heat pumps. Journal of the Energy Institute, 2016, 89(1): 70–80
|
| [16] |
Wu J, Hou H, Hu E, Performance improvement of coal-fired power generation system integrating solar to preheat feedwater and reheated steam. Solar Energy, 2018, 163: 461–470
|
| [17] |
Rivarolo M, Cuneo A, Traverso A, Design optimisation of smart poly-generation energy districts through a model based approach. Applied Thermal Engineering, 2016, 99: 291–301
|
| [18] |
Bugge J, Kjær S, Blum R. High-efficiency coal-fired power plants development and perspectives. Energy, 2006, 31(10–11): 1437–1445
|
| [19] |
Akpan P U, Fuls W F. Application and limits of a constant effectiveness model for predicting the pressure of steam condensers at off-design loads and cooling fluid temperatures. Applied Thermal Engineering, 2019, 158: 113779
|
| [20] |
Bustamante J G, Rattner A S, Garimella S. Achieving near-water-cooled power plant performance with air-cooled condensers. Applied Thermal Engineering, 2016, 105: 362–371
|
| [21] |
Deng H, Liu J, Zheng W. Analysis and comparison on condensation performance of core tubes in air-cooling condenser. International Journal of Heat and Mass Transfer, 2019, 135: 717–731
|
| [22] |
Bejan A. Entropy generation minimization, exergy analysis, and the constructal law. Arabian Journal for Science and Engineering, 2013, 38(2): 329–340
|
| [23] |
Bejan A.Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. International Journal of Energy Research, 2002, 26(7): 0–43
|
| [24] |
Yang B, Chen L G, Sun F R. Exergetic performance optimization of an endoreversible variable-temperature heat reservoirs intercooled regenerated Brayton cogeneration plant. Journal of the Energy Institute, 2016, 89(1): 1–11
|
| [25] |
d’Accadia M D, Vanoli L. Thermoeconomic optimisation of the condenser in a vapour compression heat pump. International Journal of Refrigeration, 2004, 27(4): 433–441
|
| [26] |
Khalifeh Soltan B, Saffar-Avval M, Damangir E. Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing. Applied Thermal Engineering, 2004, 24(17–18): 2801–2810
|
| [27] |
Chen L, Yang L, Du X, A novel layout of air-cooled condensers to improve thermo-flow performances. Applied Energy, 2016, 165: 244–259
|
| [28] |
Xia L, Liu D, Zhou L, Optimal number of circulating water pumps in a nuclear power plant. Nuclear Engineering and Design, 2015, 288: 35–41
|
| [29] |
Hajabdollahi H, Ahmadi P, Dincer I. Thermoeconomic optimization of a shell and tube condenser using both genetic algorithm and particle swarm. International Journal of Refrigeration, 2011, 34(4): 1066–1076
|
| [30] |
Gololo K V, Majozi T. On synthesis and optimization of cooling water systems with multiple cooling towers. Industrial & Engineering Chemistry Research, 2011, 50(7): 3775–3787
|
| [31] |
Anozie A N, Odejobi O J. The search for optimum condenser cooling water flow rate in a thermal power plant. Applied Thermal Engineering, 2011, 31(17–18): 4083–4090
|
| [32] |
Chuang C C, Sue D C. Performance effects of combined cycle power plant with variable condenser pressure and loading. Energy, 2005, 30(10): 1793–1801
|
| [33] |
O’Donovan A, Grimes R. A theoretical and experimental investigation into the thermodynamic performance of a 50 MW power plant with a novel modular air-cooled condenser. Applied Thermal Engineering, 2014, 71(1): 119–129
|
| [34] |
Li X, Wang N, Wang L, Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants. Applied Energy, 2018, 209: 153–166
|
| [35] |
Laskowski R, Smyk A, Lewandowski J, Selecting the cooling water mass flow rate for a power plant under variable load with entropy generation rate minimization. Energy, 2016, 107: 725–733
|
| [36] |
Haseli Y, Dincer I, Naterer G F. Optimum temperatures in a shell and tube condenser with respect to exergy. International Journal of Heat and Mass Transfer, 2008, 51(9–10): 2462–2470
|
| [37] |
Yang T, Wang W, Zeng D, Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation. Energy, 2017, 135: 394–404
|
| [38] |
Golkar B, Naserabad S N, Soleimany F, Determination of optimum hybrid cooling wet/dry parameters and control system in off design condition: case study. Applied Thermal Engineering, 2019, 149: 132–150
|
| [39] |
Wang L, Yang Y, Dong C, Systematic optimization of the design of steam cycles using MINLP and differential evolution. Journal of Energy Resources Technology, 2014, 136(3): 031601
|
| [40] |
Chen C, Xie D, Xiong Y, Optimization of turbine cold-end system based on BP neural network and genetic algorithm. Frontiers in Energy, 2014, 8(4): 459–463
|
| [41] |
Demirkaya G, Besarati S, Vasquez Padilla R, Multi-objective optimization of a combined power and cooling cycle for low-grade and midgrade heat sources. Journal of Energy Resources Techno-logy, 2012, 134(3): 032002
|
| [42] |
Liu M, Wang S, Yan J. Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm. Energy, 2021, 214: 119022
|
| [43] |
Bhattacharyya S, Pathak M, Sharifpur M, Heat transfer and exergy analysis of solar air heater tube with helical corrugation and perforated circular disc inserts. Journal of Thermal Analysis and Calorimetry, 2021, 145(3): 1019–1034
|
| [44] |
Fu Y, Liu M, Wang L Y, Thermo-economic optimization of the dual-pressure condenser for 700°C ultra-supercritical coal-fired power plants. In: Proceedings of the ASME 2020 Power Conference Collocated with the 2020 International Conference on Nuclear Engineering, Virtual, 2020, online, doi:10.1115/POWER2020-16302
|
| [45] |
Kelly S, Tsatsaronis G, Morosuk T. Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy, 2009, 34(3): 384–391
|
| [46] |
Liu J, Hu Y, Zeng D, Optimization of an air-cooling system and its application to grid stability. Applied Thermal Engineering, 2013, 61(2): 206–212
|
| [47] |
Cheng X. Entropy resistance minimization: an alternative method for heat exchanger analyses. Energy, 2013, 58: 672–678
|
| [48] |
McCall J. Genetic algorithms for modelling and optimisation. Journal of Computational and Applied Mathematics, 2005, 184(1): 205–222
|
| [49] |
Ameri M, Ahmadi P, Hamidi A. Energy, exergy and exergoeconomic analysis of a steam power plant: a case study. International Journal of Energy Research, 2009, 33(5): 499–512
|
| [50] |
Xiong J, Zhao H, Zhang C, Thermoeconomic operation optimization of a coal-fired power plant. Energy, 2012, 42(1): 486–496
|
| [51] |
Bejan A, Tsatsaronis G, Moran M J. Thermal Design and Optimization. New York: John Wiley & Sons, 1995
|
| [52] |
Wang L. Thermo-economic evaluation, optimization and synthesis of large-scale coal-fired power plants. Dissertations for the Doctoral Degree. Berlin: Technische Universitaet Berlin (Germany), 2016
|
| [53] |
Wang L, Yang Y, Dong C, Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution. Energy Conversion and Management, 2014, 85: 828–838
|
RIGHTS & PERMISSIONS
Higher Education Press