Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production
Yating WANG, Chaosheng PENG, Tao JIANG, Xingang LI
Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production
In recent years, defect-engineered Zr-based UiO-66 metal-organic frameworks (UiO-66(Zr) metal-organic frameworks (MOFs)) have shown huge advantages in catalytic, functional materials, adsorption, and other fields due to their large surface areas, well-ordered porous structures, and flexible tailorability. It is extremely challenging to introduce defect sites in the synthesis of MOFs to regulate the physicochemical properties of materials such as (energy band structure, pore structure, etc.) to obtain an excellent performance. This paper reviews the recent research results of synthesis methods, characterization technologies, and application fields of defect-engineered UiO-66(Zr) MOFs materials in order to provide new insights to synthesize high-performance UiO-66(Zr) MOFs materials and promote the development of UiO-66(Zr) in various fields.
defect engineering / metal-organic frameworks / UiO-66 / photocatalysis
[1] |
Xu C, Ravi Anusuyadevi P, Aymonier C,
CrossRef
Google scholar
|
[2] |
Zhang P, Wang T, Chang X,
CrossRef
Google scholar
|
[3] |
Xiao J D, Jiang H L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Accounts of Chemical Research, 2019, 52(2): 356–366
CrossRef
Google scholar
|
[4] |
Wang T, Li X, Dai W,
CrossRef
Google scholar
|
[5] |
Behrens K, Mondal S S, Noske R,
CrossRef
Google scholar
|
[6] |
Bai Y, Dou Y, Xie L,
CrossRef
Google scholar
|
[7] |
Wu C, Zhao M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis. Advanced Materials, 2017, 29(14): 1605446
CrossRef
Google scholar
|
[8] |
Lustig W P, Mukherjee S, Rudd N D,
CrossRef
Google scholar
|
[9] |
Zhao S N, Song X Z, Zhu M,
CrossRef
Google scholar
|
[10] |
Sethi K, Sharma S, Roy I. Nanoscale iron carboxylate metal organic frameworks as drug carriers for magnetically aided intracellular delivery. RSC Advances, 2016, 6(80): 76861–76866
CrossRef
Google scholar
|
[11] |
Abánades Lázaro I, Wells C J R, Forgan R S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angewandte Chemie International Edition, 2020, 59(13): 5211–5217
CrossRef
Google scholar
|
[12] |
Cavka J H, Jakobsen S, Olsbye U,
CrossRef
Google scholar
|
[13] |
Gomes Silva C, Luz I, Llabrés i Xamena F X,
CrossRef
Google scholar
|
[14] |
Qiu J, Zhang X, Feng Y,
CrossRef
Google scholar
|
[15] |
Feng J, Huang H, Fang T,
CrossRef
Google scholar
|
[16] |
Hao L, Kang L, Huang H,
CrossRef
Google scholar
|
[17] |
Wolff C M, Frischmann P D, Schulze M,
CrossRef
Google scholar
|
[18] |
De Vos A, Hendrickx K, van der Voort P,
CrossRef
Google scholar
|
[19] |
Zhao Z, Zhou H, Zheng L,
CrossRef
Google scholar
|
[20] |
Lee Y, Kim S, Kang J K,
CrossRef
Google scholar
|
[21] |
Cai G, Jiang H. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 2017, 56(2): 563–567
CrossRef
Google scholar
|
[22] |
DeStefano M R, Islamoglu T, Garibay S J,
CrossRef
Google scholar
|
[23] |
Ma X, Wang L, Zhang Q,
CrossRef
Google scholar
|
[24] |
Vermoortele F, Bueken B, Le Bars G,
CrossRef
Google scholar
|
[25] |
Yang J, Ying R, Han C,
CrossRef
Google scholar
|
[26] |
Niu Z, Guan Q, Shi Y,
CrossRef
Google scholar
|
[27] |
Shearer G C, Chavan S, Ethiraj J,
CrossRef
Google scholar
|
[28] |
Yuan L, Tian M, Lan J,
CrossRef
Google scholar
|
[29] |
Xiao J, Shang Q, Xiong Y,
CrossRef
Google scholar
|
[30] |
Gu Z, Chen L, Duan B,
CrossRef
Google scholar
|
[31] |
Zhao W, Ding T, Wang Y,
CrossRef
Google scholar
|
[32] |
Wang R, Gu L, Zhou J,
CrossRef
Google scholar
|
[33] |
Crake A, Christoforidis K C, Kafizas A,
CrossRef
Google scholar
|
[34] |
Yuan Y, Yin L, Cao S,
CrossRef
Google scholar
|
[35] |
Zhou F, Lu N, Fan B,
CrossRef
Google scholar
|
[36] |
Trickett C A, Gagnon K J, Lee S,
CrossRef
Google scholar
|
[37] |
Øien S, Wragg D S, Reinsch H,
CrossRef
Google scholar
|
[38] |
Taddei M, Wakeham R J, Koutsianos A,
CrossRef
Google scholar
|
[39] |
Nandy A, Forse A C, Witherspoon V J,
CrossRef
Google scholar
|
[40] |
Driscoll D M, Troya D, Usov P M,
CrossRef
Google scholar
|
[41] |
Wu H, Chua Y S, Krungleviciute V,
CrossRef
Google scholar
|
[42] |
Liu L, Chen Z, Wang J,
CrossRef
Google scholar
|
[43] |
Peng X, Ye L, Ding Y,
CrossRef
Google scholar
|
[44] |
Hao X, Jin Z, Yang H,
CrossRef
Google scholar
|
[45] |
Shen L, Luo M, Liu Y,
CrossRef
Google scholar
|
[46] |
Lin R, Shen L, Ren Z,
CrossRef
Google scholar
|
[47] |
Zhang Y, Jin Z. Effective electron-hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21(16): 8326–8341
CrossRef
Google scholar
|
[48] |
Xu G, Lin X, Tong Y,
CrossRef
Google scholar
|
[49] |
He J, Wang J, Chen Y,
CrossRef
Google scholar
|
[50] |
Chen Y, Tan L, Liu J,
CrossRef
Google scholar
|
[51] |
Zhang X, Dong H, Sun X,
CrossRef
Google scholar
|
[52] |
Wang Y, Ling L, Zhang W,
CrossRef
Google scholar
|
[53] |
Sun K, Liu M, Pei J,
CrossRef
Google scholar
|
[54] |
Su Y, Zhang Z, Liu H,
CrossRef
Google scholar
|
[55] |
Lionet Z, Kim T H, Horiuchi Y,
CrossRef
Google scholar
|
[56] |
Ling L, Wang Y, Zhang W,
CrossRef
Google scholar
|
[57] |
Jin Z, Yang H. Exploration of Zr-metal-organic framework as efficient photocatalyst for hydrogen production. Nanoscale Research Letters, 2017, 12(1): 539
CrossRef
Google scholar
|
[58] |
Wang Y, Yu Y, Li R,
CrossRef
Google scholar
|
[59] |
Tian P, He X, Li W,
CrossRef
Google scholar
|
[60] |
Shi L, Wang T, Zhang H,
CrossRef
Google scholar
|
[61] |
Xu X, Liu R, Cui Y,
CrossRef
Google scholar
|
[62] |
Chen X, Cai Y, Liang R,
CrossRef
Google scholar
|
[63] |
Zhang X, Yang Y, Song L,
CrossRef
Google scholar
|
[64] |
Peterson G W, Mahle J J, Decoste J B,
CrossRef
Google scholar
|
[65] |
Zhang Y, Feng X, Li H,
CrossRef
Google scholar
|
[66] |
Phang W J, Jo H, Lee W R,
CrossRef
Google scholar
|
[67] |
Pu Y, Wu W, Liu J,
CrossRef
Google scholar
|
/
〈 | 〉 |