Spectral emittance measurements of micro/nanostructures in energy conversion: a review

Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG

PDF(3342 KB)
PDF(3342 KB)
Front. Energy ›› 2020, Vol. 14 ›› Issue (3) : 482-509. DOI: 10.1007/s11708-020-0693-0
REVIEW ARTICLE

Spectral emittance measurements of micro/nanostructures in energy conversion: a review

Author information +
History +

Abstract

Micro/nanostructures play a key role in tuning the radiative properties of materials and have been applied to high-temperature energy conversion systems for improved performance. Among the various radiative properties, spectral emittance is of integral importance for the design and analysis of materials that function as radiative absorbers or emitters. This paper presents an overview of the spectral emittance measurement techniques using both the direct and indirect methods. Besides, several micro/nanostructures are also introduced, and a special emphasis is placed on the emissometers developed for characterizing engineered micro/nanostructures in high-temperature applications (e.g., solar energy conversion and thermophotovoltaic devices). In addition, both experimental facilities and measured results for different materials are summarized. Furthermore, future prospects in developing instrumentation and micro/nanostructured surfaces for practical applications are also outlined. This paper provides a comprehensive source of information for the application of micro/nanostructures in high-temperature energy conversion engineering.

Keywords

concentrating solar power (CSP) / emittance measurements / high temperature / micro/nanostructure / selective absorber / selective emitter / thermophotovoltaics (TPV)

Cite this article

Download citation ▾
Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG. Spectral emittance measurements of micro/nanostructures in energy conversion: a review. Front. Energy, 2020, 14(3): 482‒509 https://doi.org/10.1007/s11708-020-0693-0

References

[1]
Weinstein L A, Loomis J, Bhatia B, Bierman D M, Wang E N, Chen G. Concentrating solar power. Chemical Reviews, 2015, 115(23): 12797–12838
CrossRef Google scholar
[2]
Behar O. Solar thermal power plants—a review of configurations and performance comparison. Renewable & Sustainable Energy Reviews, 2018, 92: 608–627
CrossRef Google scholar
[3]
Daneshvar H, Prinja R, Kherani N P. Thermophotovoltaics: fundamentals, challenges and prospects. Applied Energy, 2015, 159: 560–575
CrossRef Google scholar
[4]
Basu S, Chen Y B, Zhang Z M. Microscale radiation in thermophotovoltaic devices—a review. International Journal of Energy Research, 2007, 31(6–7): 689–716
CrossRef Google scholar
[5]
Ferrari C, Melino F, Pinelli M, Spina P R. Thermophotovoltaic energy conversion: analytical aspects, prototypes and experiences. Applied Energy, 2014, 113: 1717–1730
CrossRef Google scholar
[6]
Turchi C S, Ma Z, Neises T W, Wagner M J. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. Journal of Solar Energy Engineering, 2013, 135(4): 041007
CrossRef Google scholar
[7]
Romero M, Steinfeld A. Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science, 2012, 5(11): 9234–9245
CrossRef Google scholar
[8]
Bermel P, Lee J, Joannopoulos J D, Celanovic I, Soljacie M. Selective solar absorbers. Annual Review of Heat Transfer, 2012, 15(15): 231–254
CrossRef Google scholar
[9]
Zhou Z, Sakr E, Sun Y, Bermel P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics, 2016, 5(1): 1–21
CrossRef Google scholar
[10]
Pfiester N A, Vandervelde T E. Selective emitters for thermophotovoltaic applications. Physica Status Solidi (A), Applications and Materials Science, 2017, 214(1): 1600410
CrossRef Google scholar
[11]
Lenert A, Bierman D M, Nam Y, Chan W R, Celanović I, Soljačić M, Wang E N. A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 2014, 9(2): 126–130
CrossRef Google scholar
[12]
Nam Y, Yeng Y X, Lenert A, Bermel P, Celanovic I, Soljačić M, Wang E N. Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Solar Energy Materials and Solar Cells, 2014, 122: 287–296
CrossRef Google scholar
[13]
Shimizu M, Kohiyama A, Yugami H. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter. Journal of Photonics for Energy, 2015, 5(1): 053099
CrossRef Google scholar
[14]
Rephaeli E, Fan S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Optics Express, 2009, 17(17): 15145–15159
CrossRef Google scholar
[15]
Khodasevych I E, Wang L, Mitchell A, Rosengarten G. Micro- and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881
CrossRef Google scholar
[16]
Zhang Z M. Nano/microscale Heat Transfer. 2nd ed. Springer Nature Switzerland AG, 2020
[17]
Rinnerbauer V, Ndao S, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljačić M, Celanovic I. Recent developments in high-temperature photonic crystals for energy conversion. Energy & Environmental Science, 2012, 5(10): 8815–8823
CrossRef Google scholar
[18]
Zhang Z M, Wang L P. Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials. International Journal of Thermophysics, 2013, 34(12): 2209–2242
CrossRef Google scholar
[19]
Honner M, Honnerova P. Survey of emissivity measurement by radiometric methods. Applied Optics, 2015, 54(4): 669–683
CrossRef Google scholar
[20]
Wang L P, Basu S, Zhang Z M. Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures. Journal of Heat Transfer, 2011, 133(7): 072701
CrossRef Google scholar
[21]
Jones J M, Mason P E, Williams A. A compilation of data on the radiant emissivity of some materials at high temperatures. Journal of the Energy Institute, 2019, 92(3): 523–534
CrossRef Google scholar
[22]
Monte C, Hollandt J. The measurement of directional spectral emissivity in the temperature range from 80°C to 500°C at the Physikalisch-Technische Bundesanstalt. High Temperatures. High Pressures, 2010, 39(2): 151–164
[23]
Monte C, Gutschwager B, Morozova S P, Hollandt J. Radiation thermometry and emissivity measurements under vacuum at the PTB. International Journal of Thermophysics, 2009, 30(1): 203–219
CrossRef Google scholar
[24]
Cagran C P, Hanssen L M, Noorma M, Gura A V, Mekhontsev S N. Temperature-resolved infrared spectral emissivity of SiC and Pt-10Rh for temperatures up to 900°C. International Journal of Thermophysics, 2007, 28(2): 581–597
CrossRef Google scholar
[25]
Wang L P, Basu S, Zhang Z M. Direct measurement of thermal emission from a Fabry-Perot cavity resonator. Journal of Heat Transfer, 2012, 134(7): 072701
CrossRef Google scholar
[26]
Mercatelli L, Meucci M, Sani E. Facility for assessing spectral normal emittance of solid materials at high temperature. Applied Optics, 2015, 54(29): 8700–8705
CrossRef Google scholar
[27]
del Campo L, Pérez-Sáez R B, Esquisabel X, Fernández I, Tello M J. New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Review of Scientific Instruments, 2006, 77(11): 113111
CrossRef Google scholar
[28]
Hanssen L M, Cagran C P, Prokhorov A V, Mekhontsev S N, Khromchenko V B. Use of a high-temperature integrating sphere reflectometer for surface-temperature measurements. International Journal of Thermophysics, 2007, 28(2): 566–580
CrossRef Google scholar
[29]
Zhang Y F, Dai J M, Wang Z W, Pan W D, Zhang L. A spectral emissivity measurement facility for solar absorbing coatings. International Journal of Thermophysics, 2013, 34(5): 916–925
CrossRef Google scholar
[30]
Fu C J, Zhang Z M. Thermal radiative properties of metamaterials and other nanostructured materials: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 11–26
CrossRef Google scholar
[31]
Zhang Z M, Ye H. Measurements of radiative properties of engineered micro-/nanostructures. Annual Review of Heat Transfer, 2013, 16(1): 345–396
CrossRef Google scholar
[32]
Dan A, Barshilia H C, Chattopadhyay K, Basu B. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review. Renewable & Sustainable Energy Reviews, 2017, 79: 1050–1077
CrossRef Google scholar
[33]
Modest M F. Radiative Heat Transfer. 3rd ed. New York: Academic Press, 2013
[34]
Zhang Z M, Tsai B K, Machin G. Radiometric Temperature Measurements: I. Fundamentals; II. Applications. New York: Academic Press, 2009
[35]
Howell J R, Menguc M P, Siegel R. Thermal Radiation Heat Transfer. 6th ed. New York: CRC Press, 2015
[36]
Worthing A. Temperature radiation emissivities and emittances. Journal of Applied Physics, 1940, 11(6): 421–437
CrossRef Google scholar
[37]
Ramanathan K, Yen S. High-temperature emissivities of copper, aluminum, and silver. Journal of the Optical Society of America, 1977, 67(1): 32–38
CrossRef Google scholar
[38]
Masuda H, Higano M. Measurement of total hemispherical emissivities of metal wires by using transient calorimetric technique. Journal of Heat Transfer, 1988, 110(1): 166–172
CrossRef Google scholar
[39]
Zhang F, Yu K, Zhang K, Liu Y, Xu K, Liu Y. An emissivity measurement apparatus for near infrared spectrum. Infrared Physics & Technology, 2015, 73: 275–280
CrossRef Google scholar
[40]
Yang P, Ye H, Zhang Z M. Experimental demonstration of the effect of magnetic polaritons on the radiative properties of deep aluminum gratings. Journal of Heat Transfer, 2019, 141(5): 052702
CrossRef Google scholar
[41]
Lee H J, Bryson A C, Zhang Z M. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918–933
CrossRef Google scholar
[42]
Yang P, Chen C, Zhang Z M. A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Solar Energy, 2018, 169: 316–324
CrossRef Google scholar
[43]
Guo Y M, Pang S J, Luo Z J, Shuai Y, Tan H P, Qi H. Measurement of directional spectral emissivity at high temperatures. International Journal of Thermophysics, 2019, 40(1): 10
CrossRef Google scholar
[44]
Ren D, Tan H, Xuan Y, Han Y, Li Q. Apparatus for measuring spectral emissivity of solid materials at elevated temperatures. International Journal of Thermophysics, 2016, 37(5): 51
CrossRef Google scholar
[45]
Pérez-Sáez R B, Campo L, Tello M J. Analysis of the accuracy of methods for the direct measurement of emissivity. International Journal of Thermophysics, 2008, 29(3): 1141–1155
CrossRef Google scholar
[46]
Honnerová P, Martan J, Honner M. Uncertainty determination in high-temperature spectral emissivity measurement method of coatings. Applied Thermal Engineering, 2017, 124: 261–270
CrossRef Google scholar
[47]
Monte C, Hollandt J. The determination of the uncertainties of spectral emissivity measurements in air at the PTB. Metrologia, 2010, 47(2): S172–S181
CrossRef Google scholar
[48]
Adibekyan A, Monte C, Kehrt M, Gutschwager B, Hollandt J.Emissivity measurement under vacuum from 4 mm to 100 mm and from -40°C to 450°C at PTB. International Journal of Thermophysics, 2015, 36(2–3): 283–289
CrossRef Google scholar
[49]
Burleigh D D, Hanssen L M, Cramer K E, Mekhontsev S N, Khromchenko V B, Peacock G R. Infrared spectral emissivity characterization facility at NIST. In: Proceedings of SPIE—The International Society for Optical Engineering (Thermosense 26), Orlando, FL, USA, 2004, 5404: 1–12
[50]
Wang L P, Zhang Z M. Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures. Journal of Heat Transfer, 2013, 135(9): 091505
CrossRef Google scholar
[51]
Yuan Z, Zhang J, Zhao J, Liang Y, Duan Y. Linearity study of a spectral emissivity measurement facility. International Journal of Thermophysics, 2009, 30(1): 227–235
CrossRef Google scholar
[52]
Balat-Pichelin M, Sans J L, Escape C, Combes H. Emissivity of Elgiloy and pure niobium at high temperature for the Solar Orbiter mission. Vacuum, 2017, 142: 87–95
CrossRef Google scholar
[53]
Ma J, Zhang Y, Wu L, Li H, Song L. An apparatus for spectral emissivity measurements of thermal control materials at low temperatures. Materials (Basel), 2019, 12(7): 1141
CrossRef Google scholar
[54]
Honnerová P, Martan J, Kučera M, Honner M, Hameury J. New experimental device for high-temperature normal spectral emissi-vity measurements of coatings. Measurement Science & Technology, 2014, 25(9): 095501
CrossRef Google scholar
[55]
Honner M, Honnerová P, Kučera M, Martan J. Laser scanning heating method for high-temperature spectral emissivity analyses. Applied Thermal Engineering, 2016, 94: 76–81
CrossRef Google scholar
[56]
Donaldson Hanna K L, Greenhagen B T, Patterson W R III, Pieters C M, Mustard J F, Bowles N E, Paige D A, Glotch T D, Thompson C. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: application to Diviner thermal infrared observations of the Moon. Icarus, 2017, 283: 326–342
CrossRef Google scholar
[57]
Cao G, Weber S J, Martin S O, Malaney T L, Slattery S R, Anderson M H, Sridharan K, Allen T R. In situ measurements of spectral emissivity of materials for very high temperature reactors. Nuclear Technology, 2011, 175(2): 460–467
CrossRef Google scholar
[58]
Gorewoda J, Scherer V. Influence of carbonate decomposition on normal spectral radiative emittance in the context of oxyfuel combustion. Energy & Fuels, 2016, 30(11): 9752–9760
CrossRef Google scholar
[59]
Gorewoda J, Scherer V. Normal radiative emittance of coal ash sulfates in the context of oxyfuel combustion. Energy & Fuels, 2017, 31(4): 4400–4406
CrossRef Google scholar
[60]
Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324(6097): 549–551
CrossRef Google scholar
[61]
Hesketh P, Gebhart B, Zemel J. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680–686
CrossRef Google scholar
[62]
Kusunoki F, Kohama T, Hiroshima T, Fukumoto S, Takahara J, Kobayashi T. Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities. Japanese Journal of Applied Physics, 2004, 43(8A): 5253–5258
CrossRef Google scholar
[63]
Sai H, Yugami H, Akiyama Y, Kanamori Y, Hane K. Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2001, 18(7): 1471–1476
CrossRef Google scholar
[64]
Sai H, Yugami H, Nakamura K, Nakagawa N, Ohtsubo H, Maruyama S. Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 4A): 1957–1961
CrossRef Google scholar
[65]
Kirikae D, Suzuki Y, Kasagi N. A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation. Journal of Micromechanics and Microengineering, 2010, 20(10): 104006
CrossRef Google scholar
[66]
Hanamura K, Kameya Y. Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity. Journal of Thermal Science and Technology, 2008, 3(1): 33–44
CrossRef Google scholar
[67]
Markham J R, Solomon P R, Best P E. An FT-IR based instrument for measuring spectral emittance of material at high temperature. Review of Scientific Instruments, 1990, 61(12): 3700–3708
CrossRef Google scholar
[68]
Ishii J, Ono A. Fourier transform spectrometer for thermal-infrared emissivity measurements near room temperatures. In: Proceedings of SPIE—The International Society for Optical Engineering (Optical Diagnostic Methods for Inorganic Materials II), San Diego, USA, 2000, 4103:126–132
[69]
Nakazawa K, Ohnishi A. Simultaneous measurement method of normal spectral emissivity and optical constants of solids at high temperature in vacuum. International Journal of Thermophysics, 2010, 31(10): 2010–2018
CrossRef Google scholar
[70]
Lee G W, Jeon S, Yoo N J, Park C W, Park S N, Kwon S Y, Lee S H. Normal and directional spectral emittance measurement of semi-transparent materials using two-substrate method: alumina. International Journal of Thermophysics, 2011, 32(6): 1234–1246
CrossRef Google scholar
[71]
Hatzl S, Kirschner M, Lippig V, Sander T, Mundt C, Pfitzner M. Direct measurements of infrared normal spectral emissivity of solid materials for high-temperature applications. International Journal of Thermophysics, 2013, 34(11): 2089–2101
CrossRef Google scholar
[72]
Bauer W, Moldenhauer A, Oertel H. Thermal radiation properties of different metals. In: Proceedings of SPIE—The International Society for Optical Engineering (Thermosense 28), Kissimmee, FL, USA, 2006, 6205: 62050E
[73]
Fu T, Duan M, Tang J, Shi C. Measurements of the directional spectral emissivity based on a radiation heating source with alternating spectral distributions. International Journal of Heat and Mass Transfer, 2015, 90: 1207–1213
CrossRef Google scholar
[74]
Hernandez D, Antoine D, Olalde G, Gineste J M. Optical fiber reflectometer coupled with a solar concentrator to determine solar reflectivity and absorptivity at high temperature. Journal of Solar Energy Engineering, 1999, 121(1): 31–35
CrossRef Google scholar
[75]
Boubault A, Claudet B, Faugeroux O, Olalde G. Accelerated aging of a solar absorber material subjected to highly concentrated solar flux. Energy Procedia, 2014, 49: 1673–1681
CrossRef Google scholar
[76]
Soum-Glaude A, Le Gal A, Bichotte M, Escape C, Dubost L. Optical characterization of TiAlNx/TiAlNy/Al2O3 tandem solar selective absorber coatings. Solar Energy Materials and Solar Cells, 2017, 170: 254–262
CrossRef Google scholar
[77]
Wang H, Prasad Sivan V, Mitchell A, Rosengarten G, Phelan P, Wang L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Solar Energy Materials and Solar Cells, 2015, 137: 235–242
CrossRef Google scholar
[78]
Yang Y, Taylor S, Alshehri H, Wang L. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces. Applied Physics Letters, 2017, 111(5): 051904
CrossRef Google scholar
[79]
Li X F, Chen Y R, Miao J, Zhou P, Zheng Y X, Chen L Y, Lee Y P. High solar absorption of a multilayered thin film structure. Optics Express, 2007, 15(4): 1907–1912
CrossRef Google scholar
[80]
Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S, Chen Y. Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61–64
CrossRef Google scholar
[81]
Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243–S249
CrossRef Google scholar
[82]
Wang L P, Zhang Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902
CrossRef Google scholar
[83]
Zhao B, Zhang Z M. Study of magnetic polaritons in deep gratings for thermal emission control. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 135: 81–89
CrossRef Google scholar
[84]
Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328–11336
CrossRef Google scholar
[85]
Sakurai A, Zhao B, Zhang Z M. Prediction of the resonance condition of metamaterial emitters and absorbers using LC circuit model. In: Proceedings of the 15th International Heat Transfer Conference IHTC15–9012, Begel House Inc., 2014
[86]
Zhao B, Wang L P, Shuai Y, Zhang Z M. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67: 637–645
CrossRef Google scholar
[87]
Yeng Y X, Ghebrebrhan M, Bermel P, Chan W R, Joannopoulos J D, Soljacic M, Celanovic I. Enabling high-temperature nanophotonics for energy applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2280–2285
CrossRef Google scholar
[88]
Rinnerbauer V, Yeng Y X, Senkevich J J, Joannopoulos J D,Soljačić M, Celanovic I. Large area selective emitters/absorbers based on 2D tantalum photonic crystals for high-temperature energy applications. In: Proceedings of SPIE—The International Society for Optical Engineering (Photonic and Phononic Properties of Engineered Nanostructures III), San Francisco, CA, USA, 2013, 8632: 863207
[89]
Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 87(7): 071904
CrossRef Google scholar
[90]
Setién-Fernández I, Echániz T, González-Fernández L, Pérez-Sáez R B, Céspedes E, Sánchez-García J A, Álvarez-Fraga L, Escobar Galindo R, Albella J M, Prieto C, Tello M J. First spectral emissivity study of a solar selective coating in the 150°C–600°C temperature range. Solar Energy Materials and Solar Cells, 2013, 117: 390–395
CrossRef Google scholar
[91]
Echániz T, Setién-Fernández I, Pérez-Sáez R B, Prieto C, Galindo R E, Tello M J. Importance of the spectral emissivity measurements at working temperature to determine the efficiency of a solar selective coating. Solar Energy Materials and Solar Cells, 2015, 140: 249–252
CrossRef Google scholar
[92]
Dan A, Basu B, Echániz T, González de Arrieta I, López G A, Barshilia H C. Effects of environmental and operational variability on the spectrally selective properties of W/WAlN/WAlON/Al2O3-based solar absorber coating. Solar Energy Materials and Solar Cells, 2018, 185: 342–350
CrossRef Google scholar
[93]
Jyothi J, Soum-Glaude A, Nagaraja H S, Barshilia H C. Measurement of high temperature emissivity and photothermal conversion efficiency of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO spectrally selective coating. Solar Energy Materials and Solar Cells, 2017, 171: 123–130
CrossRef Google scholar
[94]
Chen J, Guo J, Chen L Y. Super-wideband perfect solar light absorbers using titanium and silicon dioxide thin-film cascade optical nanocavities. Optical Materials Express, 2016, 6(12): 3804–3813
CrossRef Google scholar
[95]
Li Y, Lin C, Zhou D, An Y, Li D, Chi C, Huang H, Yang S, Tso C Y, Chao C Y H, Huang B. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947
CrossRef Google scholar
[96]
Chang C C, Kort-Kamp W J M, Nogan J, Luk T S, Azad A K, Taylor A J, Dalvit D A R, Sykora M, Chen H T. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Letters, 2018, 18(12): 7665–7673
CrossRef Google scholar
[97]
Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M, Kildishev A V. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials, 2014, 26(47): 7959–7965
CrossRef Google scholar
[98]
Huang Y, Liu L, Pu M, Li X, Ma X, Luo X. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale, 2018, 10(17): 8298–8303
CrossRef Google scholar
[99]
Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljačić M, Celanovic I. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Advanced Energy Materials, 2014, 4(12): 1400334
CrossRef Google scholar
[100]
Li P, Liu B, Ni Y, Liew K K, Sze J, Chen S, Shen S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Advanced Materials, 2015, 27(31): 4585–4591
CrossRef Google scholar
[101]
Sai H, Yugami H, Kanamori Y, Hane K. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Solar Energy Materials and Solar Cells, 2003, 79(1): 35–49
CrossRef Google scholar
[102]
Sakakibara R, Stelmakh V, Chan W R, Ghebrebrhan M, Joannopoulos J D, Soljačić M, Čelanović I. Practical emitters for thermophotovoltaics: a review. Journal of Photonics for Energy, 2019, 9(3): 032713
CrossRef Google scholar
[103]
Datas A, Martí A. Thermophotovoltaic energy in space applications: review and future potential. Solar Energy Materials and Solar Cells, 2017, 161: 285–296
CrossRef Google scholar
[104]
Tervo E J, Bagherisereshki E, Zhang Z M. Near-field radiative thermoelectric energy converters: a review. Frontiers in Energy, 2018, 12(1): 5–21
CrossRef Google scholar
[105]
Heinzel A, Boerner V, Gombert A, Bläsi B, Wittwer V, Luther J. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399–2419
CrossRef Google scholar
[106]
Marquier F, Joulain K, Mulet J P, Carminati R, Greffet J J, Chen Y. Coherent spontaneous emission of light by thermal sources. Physical Review. B, 2004, 69(15): 155412
CrossRef Google scholar
[107]
Maruyama S, Kashiwa T, Yugami H, Esashi M. Thermal radiation from two-dimensionally confined modes in microcavities. Applied Physics Letters, 2001, 79(9): 1393–1395
CrossRef Google scholar
[108]
Sai H, Kanamori Y, Yugami H. High-temperature resistive surface grating for spectral control of thermal radiation. Applied Physics Letters, 2003, 82(11): 1685–1687
CrossRef Google scholar
[109]
Sai H, Yugami H. Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Applied Physics Letters, 2004, 85(16): 3399–3401
CrossRef Google scholar
[110]
Kondo T, Hasegawa S, Yanagishita T, Kimura N, Toyonaga T, Masuda H. Control of thermal radiation in metal hole array structures formed by anisotropic anodic etching of Al. Optics Express, 2018, 26(21): 27865–27872
CrossRef Google scholar
[111]
Fang J, Xuan Y, Li Q, Fan D, Huang J. Investigation on the coupling effect of thermochromism and microstructure on spectral properties of structured surfaces. Applied Surface Science, 2012, 258(18): 7140–7145
CrossRef Google scholar
[112]
Huang J G, Xuan Y M, Li Q. Narrow-band thermal radiation based on microcavity resonant effect. Chinese Physics Letters, 2014, 31(9): 094207
CrossRef Google scholar
[113]
Fan D, Li Q, Xuan Y M, Xia Y. Thermal radiation from silicon microcavity coated with thermochromic film. Solar Energy Materials and Solar Cells, 2016, 144: 331–338
CrossRef Google scholar
[114]
Woolf D, Hensley J, Cederberg J G, Bethke D T, Grine A D, Shaner E A. Heterogeneous metasurface for high temperature selective emission. Applied Physics Letters, 2014, 105(8): 081110
CrossRef Google scholar
[115]
Stelmakh V, Rinnerbauer V, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I. Performance of tantalum-tungsten alloy selective emitters in thermophotovoltaic systems. In: Proceedings of SPIE—The International Society for Optical Engineering, (Energy Harvesting and Storage: Materials, Devices, and Applications V), Baltimore, MD, USA, 2014, 9115: 911504
[116]
Stelmakh V, Rinnerbauer V, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I. Tantalum-tungsten alloy photonic crystals for high-temperature energy conversion systems. In: Proceedings of SPIE—The International Society for Optical Engineering (Photonic Crystal Materials and Devices XI), Brussels, Belgium, 2014, 9127: 91270Q
[117]
Lee B J, Chen Y B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204–206
CrossRef Google scholar
[118]
Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer, 2009, 23(1): 9–17
CrossRef Google scholar
[119]
Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380–382
CrossRef Google scholar
[120]
Lee J H, Kim Y S, Constant K, Ho K M. Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Advanced Materials, 2007, 19(6): 791–794
CrossRef Google scholar
[121]
Qi M, Lidorikis E, Rakich P T, Johnson S G, Joannopoulos J D, Ippen E P, Smith H I. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429(6991): 538–542
CrossRef Google scholar

Acknowledgments

This work was supported by the China Scholarship Council (No. 201806320236), the Academic Award for Outstanding Doctoral Candidates of Zhejiang University (No. 2018071), the Key Research and Development Program of Ningxia Hui Autonomous Region (No. 2018BCE01004), and the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(3342 KB)

Accesses

Citations

Detail

Sections
Recommended

/