Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD

PDF(2919 KB)
PDF(2919 KB)
Front. Energy ›› 2019, Vol. 13 ›› Issue (4) : 770-797. DOI: 10.1007/s11708-019-0651-x
REVIEW ARTICLE
REVIEW ARTICLE

Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

Author information +
History +

Abstract

Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

Keywords

double perovskites / electrode materials / hydrocarbon fuel / solid oxide fuel cells

Cite this article

Download citation ▾
Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Front. Energy, 2019, 13(4): 770‒797 https://doi.org/10.1007/s11708-019-0651-x

References

[1]
Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209
CrossRef Google scholar
[2]
Andújar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322
CrossRef Google scholar
[3]
Abdalla A M, Hossain S, Petra P M, Ghasemi M, Azad A K. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018, 12(1): 1–24
CrossRef Google scholar
[4]
Abdalla A M, Hossain S, Nisfindy O B, Azad A T, Dawood M, Azad A K. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conversion and Management, 2018, 165: 602–627
CrossRef Google scholar
[5]
Wang S, Jiang S P. Prospects of fuel cell technologies. National Science Review, 2017, 4(2): 163–166
[6]
Garche J, Ju rissen L. Applications of fuel cell technology: status and perspectives. Electrochemical Society Interface, 2015, 24(2): 39–43
CrossRef Google scholar
[7]
U.S. Department of Energy. Fuel cell technologies office. 2015, available at energy.gov website
[8]
Johnson Matthey P L C. Fuel cell applications–fuel cell today. 2018-11-22, available at fuelcelltoday.com webite
[9]
Financial Times. Japan is betting future cars will use hydrogen fuel cells. 2018-03-27, available at ft.com website
[10]
Nissan Motor Corporation. Runnig on e-Bio: Nissan’s solid oxide fuel cell system. 2016-06-14, available at nissan-global.com website
[11]
INSIDEEVS. Navigant: fuel cell vehicle sales to exceed 228000 units by 2024. 2015-12-27, available at insideevs.com website
[12]
Ang S M C, Fraga E S, Brandon N P, Samsatli N J, Brett D J L. Fuel cell systems optimisation–methods and strategies. International Journal of Hydrogen Energy, 2011, 36(22): 14678–14703
CrossRef Google scholar
[13]
Stambouli A B, Traversa E, Stambouli A. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455
CrossRef Google scholar
[14]
Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Reviews on solid oxide fuel cell technology. Engineering Journal (New York), 2009, 13(1): 65–84
CrossRef Google scholar
[15]
Minh N Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1-4): 271–277
CrossRef Google scholar
[16]
Bao C, Wang Y, Feng D L, Jiang Z, Zhang X. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Progress in Energy and Combustion Science, 2018, 66: 83–140
CrossRef Google scholar
[17]
Rits V, Kypreos S, Wokaun A. Evaluating the diffusion of fuel-cell cars in the China markets. IATSS Research, 2004, 28(1): 34–46
CrossRef Google scholar
[18]
Venture Radar. SOFC | Venture Radar Search. 2018, available at ventureradar.com website
[19]
Business Wire.Top emerging trends in the global solid oxide fuel cell market| Technavio. 2018-04-04, available at businesswire.com website
[20]
Markets and Markets. Solid oxide fuel cell market by type (planar and tubular), application (power generation, combined heat & power, and military), end-use (data centers, commercial & retail, and APU), region (north America, Asia Pacific, and Europe)–global forecast to 2025. 2017, available at marketsandmarkets.com website
[21]
Abdalla A M, Hossain S, Zhou J, Petra P M I, Erikson S, Savaniu C D, Irvine J T S, Azad A K. NdBaMn2O5+d layered perovskite as an active cathode material for solid oxide fuel cells. Ceramics International, 2017, 43(17): 15932–15938
CrossRef Google scholar
[22]
Taroco H A, Santos J A F, Domingues R Z, Matencio T. Ceramic materials for solid oxide fuel cells. 2011, available at intechopen.com website
[23]
Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209
CrossRef Google scholar
[24]
Liu Q, Dong X, Xiao G, Zhao F, Chen F. A Novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478–5482
CrossRef Google scholar
[25]
Huang Y H. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257
CrossRef Google scholar
[26]
Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004, 3(1): 17–27
CrossRef Google scholar
[27]
Zhang L, He T. Performance of double-perovskite Sr2–xSmxMgMoO6–d as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359
CrossRef Google scholar
[28]
Steele B C, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
CrossRef Google scholar
[29]
Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152–153: 405–410
CrossRef Google scholar
[30]
Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170–173
CrossRef Google scholar
[31]
Han D, Liu X, Zeng F, Qian J, Wu T, Zhan Z. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Scientific Reports, 2012, 2(1): 462
CrossRef Google scholar
[32]
Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(6745): 649–651
CrossRef Google scholar
[33]
Park S, Vohs J, Gorte R. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267
CrossRef Google scholar
[34]
McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 2004, 104(10): 4845–4866
CrossRef Google scholar
[35]
Abdalla A M, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368
CrossRef Google scholar
[36]
Safran. Fuel cells: green energy on board. 2018-11-22, available at safran-group.com website
[37]
Reza M S, Ahmed A, Caesarendra W, Abu Bakar M S, Shams S, Saidur R, Aslfattahi N, Azad A K. Acacia holosericea: an invasive species for bio-char, bio-oil, and biogas production. Bioengineering Multidisciplinary Digital Publishing Institute, 2019, 6(2): 33
CrossRef Google scholar
[38]
Justin Fitzgerald and Nancy O’Bryan. NASA– Fuel cells: a better energy source for earth and space. 2005-11-02, available at nasa.gov website
[39]
Singhal S. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1–4): 305–313
CrossRef Google scholar
[40]
Tao S W, Irvine J T S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Advanced Materials, 2006, 18(12): 1581–1584
CrossRef Google scholar
[41]
Radenahmad N, Afif A, Petra P I, Rahman S M H, Eriksson S G, Azad A K. Proton-conducting electrolytes for direct methanol and direct urea fuel cells–a state-of-the-art review. Renewable & Sustainable Energy Reviews, 2016, 57: 1347–1358
CrossRef Google scholar
[42]
Malavasi L, Fisher C A J, Islam M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010, 39(11): 4370–4387
CrossRef Google scholar
[43]
Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764
CrossRef Google scholar
[44]
Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y M. Rational SOFC material design: new advances and tools. Materials Today, 2011, 14(11): 534–546
CrossRef Google scholar
[45]
Cologna M. Advances in the production of planar and micro-tubular solid oxide fuel cells. Dissertation for the Doctoral Degree. Trento: University of Trento
[46]
Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455
CrossRef Google scholar
[47]
Hatchwell C E, Sammes N M, Kendall K. Cathode current-collectors for a novel tubular SOFC design. Journal of Power Sources, 1998, 70(1): 85–90
CrossRef Google scholar
[48]
National Energy Technology Laboratory. Solid oxide fuel cell. 2018-11-26, available at netl.doe.gov website
[49]
Vaillant unveils wall-mounted CHP unit, using staxera SOFC. Fuel Cells Bulletin, 2011, 5: 4
CrossRef Google scholar
[50]
Kupecki J. Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. International Journal of Hydrogen Energy, 2015, 40(35): 12009–12022
CrossRef Google scholar
[51]
SOLID power. For private households–SOLID power. 2018-11-26, available at solidpower.com website
[52]
Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018
CrossRef Google scholar
[53]
Cava R J, Batlogg B, Krajewski J J, Farrow R, Rupp L W, White A E, Short K, Peck W F, Kometani T. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature, 1988, 332(6167): 814–816
CrossRef Google scholar
[54]
Zhang Z, Li J, Zhou W, Yang C, Cao Q, Wang D, Du Y. Mechanism of enhancement in magnetoresistance properties of manganite perovskite ceramics by current annealing. Ceramics International, 2018, 44(4): 3760–3764
CrossRef Google scholar
[55]
Afroze S, Binti Haji Bakar A N, Reza M S, Salam M A. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: imitating forearm motion. IET Conference Publications, 2018
[56]
Schlom D G, Chen L Q, Pan X, Schmehl A, Zurbuchen M A. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 2008, 91(8): 2429–2454
CrossRef Google scholar
[57]
Locock A J, Mitchell R H. Perovskite classification: an excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup. Computers & Geosciences, 2018, 113: 106–114
CrossRef Google scholar
[58]
Li R, Yu C, Shen S. Partial oxidation of methane to syngas using lattice oxygen of La1–xSrxFeO3 perovskite oxide catalysts instead of molecular oxygen. Journal of Natural Gas Chemistry, 2002, 11: 137–144
[59]
El-Ads E. Perovskite nanomaterials–synthesis, characterization, and applications. InTech, 2016: 107–151
[60]
Azad A K. Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A2FeBO6 (A= Ca, Sr, Ba, La; B= W, Mo, Cr). 2004, available at lib.ugent.be website
[61]
Azad A K, Mellergård A, Eriksson S G, Ivanov S A, Eriksen J, Rundlöf H. Preparation, crystal and magnetic structure of the double perovskite Ba2FeWO6. Applied Physics A: Materials Science & Processing, 2002, 74(Sup.1): s763–s765
CrossRef Google scholar
[62]
Azad A, Eriksson S G. Formation of a cubic Sr2MnWO6 phase at elevated temperature: a neutron powder diffraction study. Solid State Communications, 2003, 126(9): 503–508
CrossRef Google scholar
[63]
Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82
CrossRef Google scholar
[64]
Azad A K, Ivanov S, Eriksson S G, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic properties of the double perovskite Sr2MnWO6. Journal of Magnetism and Magnetic Materials, 2001, 237(2): 124–134
CrossRef Google scholar
[65]
Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Nuclear and magnetic structure of Ca2MnWO6: a neutron powder diffraction study. Materials Research Bulletin, 2001, 36(13–14): 2485–2496
CrossRef Google scholar
[66]
Azad A K, Eriksson S G, Ivanov S A, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic characterisation of the double perovskites AA′MnWO6 (AA′ = Ba2, SrBa, Sr2, SrCa and Ca2). Ferroelectrics, 2002, 269(1): 105–110
CrossRef Google scholar
[67]
Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257
CrossRef Google scholar
[68]
Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on {H2} and {CH4} fuels. Journal of Power Sources, 2011, 196(4): 1738–1743
CrossRef Google scholar
[69]
Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8071–8074
CrossRef Google scholar
[70]
Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Pérez-Coll D, Aranda M A G, Núñez P. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6-d anode. Materials Research Bulletin, 2008, 43(8–9): 2441–2450
CrossRef Google scholar
[71]
Bernuy-Lopez C, Allix M, Bridges C A, Claridge J B, Rosseinsky M J. Sr2MgMoO6-d: structure, phase stability, and cation site order control of reduction. Chemistry of Materials, 2007, 19(5): 1035–1043
CrossRef Google scholar
[72]
Vasala S, Lehtimäki M, Huang Y H, Yamauchi H, Goodenough J B, Karppinen M. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6-d (M=Mg, Mn, Fe, Co, Ni, Zn). Journal of Solid State Chemistry, 2010, 183(5): 1007–1012
CrossRef Google scholar
[73]
Azizi F, Kahoul A, Azizi A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484(1–2): 555–560
CrossRef Google scholar
[74]
Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. Synthesis and characterization of Sr2MgMoO6-d : an anode material for the solid oxide fuel cell. Journal of the Electrochemical Society, 2006, 153(7): A1266–A1272
CrossRef Google scholar
[75]
Xie Z, Zhao H, Du Z, Chen T. Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6-d as an anode material for solid oxide fuel cells. Journal of Physical Chemistry, 2012, 116: 9734–9743
[76]
Pan X, Wang Z, He B, Wang S, Wu X, Xia C. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38(10): 4108–4115
CrossRef Google scholar
[77]
Xie Z, Zhao H, Chen T, Zhou X, Du Z. Synthesis and electrical properties of Al-doped Sr2MgMoO6–d as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(12): 7257–7264
CrossRef Google scholar
[78]
Goldschmidt V M. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485
CrossRef Google scholar
[79]
Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32(5): 751–767
CrossRef Google scholar
[80]
Rebaza A V G, Toro C E D, Téllez D A L, Roa-Rojas J. Electronic structure of the double perovskite Ba2Er(Nb,Sb)O6. Journal of Physics: Conference Series, 2014, 480: 012041
CrossRef Google scholar
[81]
Fu W T, IJdo D J W. X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln=La, Pr, Nd and Sm). Journal of Solid State Chemistry, 2005, 178(7): 2363–2367
CrossRef Google scholar
[82]
Gopalakrishnan J, Chattopadhyay A, Ogale SB, Venkatesan T, Greene R L, Millis A J, Ramesha K, Hannoyer B, Marest G. Metallic and nonmetallic double perovskites : a case study of A2FeReO6 (A= Ca, Sr, Ba). 2000, 62(14): 9538–9542
CrossRef Google scholar
[83]
Davis M J, Mugavero S J III, Glab K I, Smith M D, zur Loye H C. The crystal growth and characterization of the lanthanide-containing double perovskites Ln2NaIrO6 (Ln=La, Pr, Nd). Solid State Sciences, 2004, 6(5): 413–417
CrossRef Google scholar
[84]
Yamamura K, Wakeshima M, Hinatsu Y. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M=W, Re, Os). Journal of Solid State Chemistry, 2006, 179(3): 605–612
CrossRef Google scholar
[85]
Gens R, Fuger J, Morss L R, Williams C W. Thermodynamics of actinide perovskite-type oxides III. Molar enthalpies of formation of B2MAnO6 (M=Mg, Ca, or Sr; An=U, Np, or Pu) and M3PuO6 (M=Ba or Sr). Journal of Chemical Thermodynamics, 1985, 17(6): 561–573
CrossRef Google scholar
[86]
Fu W T, IJdo D J W. Re-examination of the structure of Ba2MIrO6 (M= La, Y): space group revised. Journal of Alloys and Compounds, 2005, 394(1–2): 10–13
[87]
Bharti C, Sinha T P. Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sciences, 2010, 12(4): 498–502
CrossRef Google scholar
[88]
Shaheen R, Bashir J. Ca2CoNbO6: a new monoclinically distorted double perovskite. Solid State Sciences, 2010, 12(8): 1496–1499
CrossRef Google scholar
[89]
Gemmill W R, Smith M D, zur Loye H C. Synthesis, structural characterization, and magnetic properties of the antiferromagnetic double perovskites Ln2LiOsO6 (Ln=La, Pr, Nd, Sm). Journal of Solid State Chemistry, 2006, 179(6): 1750–1756
CrossRef Google scholar
[90]
Zhang Y, Ji V. Half-metallic ferromagnetic nature of the double perovskite Pb2FeMoO6 from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1116–1121
CrossRef Google scholar
[91]
Mugavero S J III, Smith M D, zur Loye H C. The crystal growth and magnetic properties of Ln2LiIrO6 (Ln=La, Pr, Nd, Sm, Eu). Journal of Solid State Chemistry, 2005, 178(1): 200–206
CrossRef Google scholar
[92]
Zhou Q, Kennedy B J, Howard C J, Elcombe M M, Studer A J. Structural phase transitions in A2–xSrxNiWO6 (A= Ca or Ba, 0≤x≤2) double perovskites. Chemistry of Materials, 2005, 17(21): 5357–5365
CrossRef Google scholar
[93]
Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1-2): 77–82
CrossRef Google scholar
[94]
Strandbakke R, Cherepanov V A, Zuev A Y, Tsvetkov D S, Argirusis C, Sourkouni G, Prünte S, Norby T. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278: 120–132
CrossRef Google scholar
[95]
Philipp J B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A2CrWO6. Physical Review. B, 2003, 68(14): 144431
CrossRef Google scholar
[96]
Popov G, Greenblatt M, Croft M. Large effects of A-site average cation size on the properties of the double perovskites Ba2-xSrx MnReO6 : a d5-d1 system. Physical Review. B, 2003, 67(2): 024406
CrossRef Google scholar
[97]
Westerburg W, Lang O, Ritter C, Felser C, Tremel W, Jakob G. Magnetic and structural properties of the double-perovskite Ca2FeReO6. Solid State Communications, 2002, 122(3–4): 201–206
CrossRef Google scholar
[98]
Falcón H, Barbero J A, Araujo G, Casaisc M T, Martı́nez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A2FeMoO6-d (A=Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45
CrossRef Google scholar
[99]
Retuerto M, Alonso J A, García-Hernández M, Martínez-Lope M J. Synthesis, structure and magnetic properties of the new double perovskite Ca2CrSbO6. Solid State Communications, 2006, 139(1): 19–22
CrossRef Google scholar
[100]
Hu R, Ding R, Chen J, Hu J, Zhang Y. Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catalysis Communications, 2012, 21: 38–41
CrossRef Google scholar
[101]
Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018
CrossRef Google scholar
[102]
Parfitt D, Chroneos A, Tarancón A, Kilner J A. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+d. Journal of Materials Chemistry, 2011, 21(7): 2183–2186
CrossRef Google scholar
[103]
Presto S, Kumar P, Varma S, Viviani M, Singh P. Electrical conductivity of NiMo–based double perovskites under SOFC anodic conditions. International Journal of Hydrogen Energy, 2018, 43(9): 4528–4533
CrossRef Google scholar
[104]
Fu D, Jin F, He T. A-site calcium-doped Pr1-xCaxBaCo2O5+d double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141
CrossRef Google scholar
[105]
Anderson M T, Greenwood K B, Taylor G A, Poeppelmeier K. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, 22(3): 197–233
CrossRef Google scholar
[106]
Serrate D, De Teresa J M, Algarabel P A, Marquina C, Blasco J, Ibarra M R, Galibert J. Magnetoelastic coupling in Sr2(Fe1-xCrx)ReO6 double perovskites. Journal of Physics Condensed Matter, 2007, 19(43): 436226
CrossRef Google scholar
[107]
Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2-xCuxO5+d at elevated temperatures. Solid State Ionics, 2015, 274: 17–23
CrossRef Google scholar
[108]
Niu B, Jin F, Yang X, Feng T, He T. Resisting coking and sulfur poisoning of double perovskite. 2018, 43(6): 3280–3290
CrossRef Google scholar
[109]
Kim J H, Manthiram A. Layered NdBaCo2-xNixO5+d perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28): 7551–7557
CrossRef Google scholar
[110]
Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003
CrossRef Google scholar
[111]
Battle P D, Jones C W. The crystal and magnetic structures of Sr2LuRuO6, Ba2YRuO6, and Ba2LuRuO6. Journal of Solid State Chemistry, 1989, 78(1): 108–116
CrossRef Google scholar
[112]
Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Materials Research Bulletin, 2001, 36(12): 2215–2228
CrossRef Google scholar
[113]
Azad A K, Eriksson S G, Mellergård A, Ivanov S A, Eriksen J, Rundlöf H. A study on the nuclear and magnetic structure of the double perovskites A2FeWO6 (A= Sr, Ba) by neutron powder diffraction and reverse Monte Carlo modeling. Materials Research Bulletin, 2002, 37(11): 1797–1813
CrossRef Google scholar
[114]
Anderson M T, Poeppelmeier K R. La2CuSnO6: a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482
CrossRef Google scholar
[115]
Glazer A M. The classification of tilted octahedra in perovskites. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1972, 28(11): 3384–3392
CrossRef Google scholar
[116]
Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003
CrossRef Google scholar
[117]
Prellier W, Smolyaninova V, Biswas A, Galley C, Greene R L, Ramesha K, Gopalakrishnan J. Properties of the ferrimagnetic double perovskites A2FeReO6 (A= Ba and Ca). Journal of Physics Condensed Matter, 2000, 12(6): 965–973
CrossRef Google scholar
[118]
Anderson M T, Poeppelmeier K R. Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482
CrossRef Google scholar
[119]
Azad A K, Basheer F, Iskandar Petra P M, Ghosh A, Irvine J T S. Structure-property relationship in Mg-doped La0.75Sr0.25Mn0.5 Cr0.5O3 anode for solid oxide fuel cell. In: 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 2014: 1115
[120]
Wang Y, Zhang H, Chen F, Xia C. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203: 34–41
CrossRef Google scholar
[121]
Ghosh A, Azad A K, Irvine J T S. Study of Ga doped LSCM as an anode for SOFC. ECS Transactions, 2011, 35(1): 1337–1343
[122]
Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8
CrossRef Google scholar
[123]
Xia C, Liu M. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs. Solid State Ionics, 2002, 152–153: 423–430
CrossRef Google scholar
[124]
Brett D J L, Atkinson A, Brandon N P, Skinner S J. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, 37(8): 1568
CrossRef Google scholar
[125]
Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267
CrossRef Google scholar
[126]
Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 2003, 216(1–2): 477–486
CrossRef Google scholar
[127]
Shri Prakash B, Senthil Kumar S, Aruna S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable & Sustainable Energy Reviews, 2014, 36: 149–179
CrossRef Google scholar
[128]
Huan Y, Li Y, Yin B, Ding D, Wei T. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A= Ca, Sr, Ba). Journal of Power Sources, 2017, 359: 384–390
CrossRef Google scholar
[129]
Zheng K, Świerczek K, Zając W, Klimkowicz A. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ionics, 2014, 257: 9–16
CrossRef Google scholar
[130]
Rath M K, Lee K T. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-d as an electrode material for symmetric solid oxide fuel cells. Electrochimica Acta, 2016, 212: 678–685
CrossRef Google scholar
[131]
dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7
CrossRef Google scholar
[132]
Kumar P, Presto S, Sinha A S K, Varma S, Viviani M, Singh P. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. Journal of Alloys and Compounds, 2017, 725: 1123–1129
CrossRef Google scholar
[133]
Ding H, Tao Z, Liu S, Yang Y. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-d double perovskite as anode material. Journal of Power Sources, 2016, 327: 573–579
CrossRef Google scholar
[134]
Sun Y F, Zhang Y Q, Hua B, Behnamian Y, Li J, Cui S H, Li J H, Luo J L. Molybdenum doped Pr0.5Ba0.5MnO3-d (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. Journal of Power Sources, 2016, 301: 237–241
CrossRef Google scholar
[135]
Tomkiewicz A C, Tamimi M A, Huq A, McIntosh S. Structural analysis of PrBaMn2O5+d under SOFC anode conditions by in-situ neutron powder diffraction. Journal of Power Sources, 2016, 330: 240–245
CrossRef Google scholar
[136]
Xu L, Yin Y M, Zhou N, Wang Z, Ma Z F. Sulfur tolerant redox stable layered perovskite SrLaFeO4-d as anode for solid oxide fuel cells. Electrochemistry Communications, 2017, 76: 51–54
CrossRef Google scholar
[137]
Wang F Y, Zhong G B, Luo S, Xia L, Fang L H, Song X, Hao X, Yan G. Porous Sr2MgMo1–xVxO6–d ceramics as anode materials for SOFCs using biogas fuel. Catalysis Communications, 2015, 67: 108–111
CrossRef Google scholar
[138]
He B, Wang Z, Zhao L, Pan X, Wu X, Xia C. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells. Journal of Power Sources, 2013, 241: 627–633
CrossRef Google scholar
[139]
Escudero M J, Gómez deParada I, Fuerte A, Daza L. Study of Sr2Mg(Mo0.8Nb0.2)O6-d as anode material for solid oxide fuel cells using hydrocarbons as fuel. Journal of Power Sources, 2013, 243: 654–660
CrossRef Google scholar
[140]
Zhang Q, Wei T, Huang Y H. Electrochemical performance of double-perovskite Ba2MMoO6 (M=Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 198: 59–65
CrossRef Google scholar
[141]
Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Martín-Sedeño M C, Núñez P. High temperature phase transition in SOFC anodes based on Sr2MgMoO6-d. Journal of Solid State Chemistry, 2009, 182(5): 1027–1034
CrossRef Google scholar
[142]
Han Z, Wang Y, Yang Y, Li L, Yang Z, Han M. High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−d anodes toward sulfur resistance. Journal of Alloys and Compounds, 2017, 703: 258–263
[143]
Gansor P, Xu C, Sabolsky K, Zondlo J W, Sabolsky E M. Phosphine impurity tolerance of Sr2MgMoO6-d composite SOFC anodes. Journal of Power Sources, 2012, 198: 7–13
CrossRef Google scholar
[144]
Li H, Zhao Y, Wang Y, Li Y. Sr2Fe2-xMoxO6-d perovskite as an anode in a solid oxide fuel cell: effect of the substitution ratio. Catalysis Today, 2016, 259: 417–422
CrossRef Google scholar
[145]
Zhang L, Zhou Q, He Q, He T. Double-perovskites A2FeMoO6-d (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366
CrossRef Google scholar
[146]
Jiang L, Liang G, Han J, Huang Y. Effects of Sr-site deficiency on structure and electrochemical performance in Sr2MgMoO6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270: 441–448
CrossRef Google scholar
[147]
Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6-d as SOFC anode. Solid State Ionics, 2010, 180(40): 1672–1682
CrossRef Google scholar
[148]
Howell T G, Kuhnell C P, Reitz T L, Sukeshini A M, Singh R N. {A2MgMoO6} (A= Sr,Ba) for use as sulfur tolerant anodes. Journal of Power Sources, 2013, 231: 279–284
CrossRef Google scholar
[149]
Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. Journal of Power Sources, 2011, 196(4): 1738–1743
CrossRef Google scholar
[150]
Vasala S, Lehtimäki M, Haw S C, Chen J M, Liu R S, Yamauchi H, Karppinen M. Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6-d SOFC-anode material. Solid State Ionics, 2010, 181(15–16): 754–759
CrossRef Google scholar
[151]
Liu Q, Bugaris D E, Xiao G, Chmara M, Ma S, zur Loye H C, Amiridis M D, Chen F. Sr2Fe1.5Mo0.5O6-d as a regenerative anode for solid oxide fuel cells. Journal of Power Sources, 2011, 196(22): 9148–9153
CrossRef Google scholar
[152]
Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah H Q H H, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1-xTixNbO6-d as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673
CrossRef Google scholar
[153]
Martínez-Coronado R, Aguadero A, Alonso J A, Fernández-Díaz M T. Reversible oxygen removal and uptake in the La2ZnMnO6 double perovskite: performance in symmetrical SOFC cells. Solid State Sciences, 2013, 18: 64–70
CrossRef Google scholar
[154]
Li W, Cheng Y, Zhou Q, Wei T, Li Z, Yan H, Wang Z, Han X. Evaluation of double perovskite Sr2FeTiO6-d as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2015, 41(9): 12393–12400
CrossRef Google scholar
[155]
Ding H, Sullivan N P, Ricote S. Double perovskite Ba2FeMoO6-d as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 2017, 306: 97–103
CrossRef Google scholar
[156]
Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics, 2014, 262: 354–358
CrossRef Google scholar
[157]
Song Y, Zhong Q, Tan W, Pan C. Effect of cobalt-substitution Sr2Fe1.5-xCoxMo0.5O6-d for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochimica Acta, 2014, 139: 13–20
CrossRef Google scholar
[158]
Tarancón A, Marrero-López D, Peña-Martínez J, Ruizmorales J, Nunez P. Effect of phase transition on high-temperature electrical properties of GdBaCo2O5+x layered perovskite. Solid State Ionics, 2008, 179(17–18): 611–618
CrossRef Google scholar
[159]
Song Y, Zhong Q, Wang D, Xu Y, Tan W. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6-d and hydrogen sulfide in symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22266–22272
CrossRef Google scholar
[160]
Wright J H, Virkar A V, Liu Q, Chen F. Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6-d as a possible solid oxide fuel cell electrode. Journal of Power Sources, 2013, 237: 13–18
CrossRef Google scholar
[161]
Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+d (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689
CrossRef Google scholar
[162]
Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000
CrossRef Google scholar
[163]
Jiang S P. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 2003, 124(2): 390–402
CrossRef Google scholar
[164]
Carter S, Selcuk A, Chater R J, Kajda J, Kilner J A, Steele B C H. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics, 1992, 53–56: 597–605
CrossRef Google scholar
[165]
Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 2007, 17(24): 2500
CrossRef Google scholar
[166]
Choi S, Kucharczyk C J, Liang Y, Zhang X, Takeuchi I, Ji H I, Haile S M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3(3): 202–210
CrossRef Google scholar
[167]
Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144
CrossRef Google scholar
[168]
Lü S, Meng X, Ji Y, Fu C, Sun C, Zhao H. Electrochemical performances of NdBa0.5Sr0.5Co2O5+x as potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8094–8096
CrossRef Google scholar
[169]
Jiang X, Wang J, Jia G, Qie Z, Shi Y, Idrees A, Zhang Q, Jiang L. Characterization of PrBa0.92CoCuO6–d as a potential cathode material of intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2017, 42(9): 6281–6289
CrossRef Google scholar
[170]
Tomkiewicz A C, Meloni M, McIntosh S. On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics, 2014, 260: 55–59
CrossRef Google scholar
[171]
Li H, Sun L P, Li Q, Xia T, Zhao H, Huo L H, Bassat J M, Rougier A, Fourcade S, Grenier J C. Electrochemical performance of double perovskite Pr2NiMnO6 as a potential IT-SOFC cathode. International Journal of Hydrogen Energy, 2015, 40(37): 12761–12769
CrossRef Google scholar
[172]
Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+d cathode material for proton-conducting IT-SOFC. Ceramics International, 2015, 41(8): 10276–10280
CrossRef Google scholar
[173]
Jin F J, Liu J, Niu B, Ta L, Li R, Wang Y, Yang X, He T. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+d cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439–21449
CrossRef Google scholar
[174]
Fu D, Jin F, He T. A-site calcium-doped Pr1–xCaxBaCo2O5+d double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141
CrossRef Google scholar
[175]
Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a brief review. Journal of Power Sources, 2015, 298: 46–67
CrossRef Google scholar
[176]
Mao X, Yu T, Ma G. Performance of cobalt-free double-perovskite NdBaFe2–xMnxO5+d cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 2015, 637: 286–290
CrossRef Google scholar
[177]
Pang S, Wang W, Chen T, Wang Y, Xu K, Shen X, Xi X, Fan J. The effect of potassium on the properties of PrBa1-xCo2O5+d (x = 0.00–0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(31): 13705–13714
CrossRef Google scholar
[178]
Xia L N, He Z P, Huang X W, Yu Y. Synthesis and properties of SmBaCo2–xNixO5+d perovskite oxide for IT-SOFC cathodes. Ceramics International, 2016, 42(1): 1272–1280
CrossRef Google scholar
[179]
Jin F, Xu H, Long W, Shen Y, He T. Characterization and evaluation of double perovskites LnBaCoFeO5+d (Ln= Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10–18
CrossRef Google scholar
[180]
Seymour I D, Tarancón A, Chroneos A, Parfitt D, Kilner J A, Grimes R W. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics, 2012, 216: 41–43
CrossRef Google scholar
[181]
Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2–xCuxO5+d at elevated temperatures. Solid State Ionics, 2015, 274: 17–23
CrossRef Google scholar
[182]
Saccoccio M, Jiang C, Gao Y, Chen D, Ciucci F. Nb-substituted PrBaCo2O5+d as a cathode for solid oxide fuel cells: a systematic study of structural, electrical, and electrochemical properties. International Journal of Hydrogen Energy, 2017, 42(30): 19204–19215
CrossRef Google scholar
[183]
Jin F, Li L, He T. NdBaCo2/3Fe2/3Cu2/3O5+d double perovskite as a novel cathode material for CeO2- and LaGaO3-based solid oxide fuel cells. Journal of Power Sources, 2015, 273: 591–599
CrossRef Google scholar
[184]
Li L, Jin F, Shen Y, He T. Cobalt-free double perovskite cathode GdBaFeNiO5+d and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682–692
CrossRef Google scholar
[185]
Li S, Xia T, Li Q, Sun L, Huo L, Zhao H. A-site Ba-deficiency layered perovskite EuBa1–xCo2O6–d cathodes for intermediate-temperature solid oxide fuel cells: electrochemical properties and oxygen reduction reaction kinetics. International Journal of Hydrogen Energy, 2017, 42(38): 24412–24425
CrossRef Google scholar
[186]
Jin F, Shen Y, Wang R, He T. Double-perovskite PrBaCo2/3 Fe2/3Cu2/3O5+d as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244–251
CrossRef Google scholar
[187]
Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6–d double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750
CrossRef Google scholar
[188]
Jin F, Liu J, Shen Y, He T. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+dSm0.2-Ce0.8O1.9 (Ln=Pr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483–491
CrossRef Google scholar
[189]
Xue J, Shen Y, He T. Double-perovskites YBaCo2–xFexO5+d cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196(8): 3729–3735
CrossRef Google scholar
[190]
Zhou Q, He T, Ji Y. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185(2): 754–758
CrossRef Google scholar
[191]
Kong X, Liu G, Yi Z, Ding X. NdBaCu2O5+d and NdBa0.5Sr0.5 Cu2O5+d layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46): 16477–16483
CrossRef Google scholar
[192]
Wei B, Chen K, Wang C C, Lü Z, Jiang S P. Performance degradation of SmBaCo2O5+d cathode induced by chromium deposition for solid oxide fuel cells. Electrochimica Acta, 2015, 174: 327–331
CrossRef Google scholar
[193]
Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang L, Li X, Sui Y, Yang J. Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6 O5+d as cathode material for intermediate-temperature solid oxide fuel cells. Ceramics International, 2014, 40(9, Part B): 14919–14925
CrossRef Google scholar
[194]
Kuroda C, Zheng K, Swierczek K. Characterization of novel GdBa0.5Sr0.5Co2–xFexO5+d perovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 2013, 38(2): 1027–1038
CrossRef Google scholar
[195]
Subardi A, Chen C C, Cheng M H, Chang W K, Fu Y P. Electrical, thermal and electrochemical properties of SmBa1-xSrxCo2O5+d cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2016, 204: 118–127
CrossRef Google scholar
[196]
Yu L, Chen Y, Gu Q, Tian D, Lu X, Meng G, Lin B. Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+d as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 2015, 33(5): 519–523 (in Chinese)
CrossRef Google scholar
[197]
Donazzi A, Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G, Sora I N. Evaluation of Ba deficient NdBaCo2O5+d oxide as cathode material for IT-SOFC. Electrochimica Acta, 2015, 182: 573–587
CrossRef Google scholar
[198]
Che X, Shen Y, Li H, He T. Assessment of LnBaCo1.6Ni0.4O5+d (Ln= Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 222: 288–293
CrossRef Google scholar
[199]
Pérez-Flores J C, Gómez-Pérez A, Yuste M, Canales-Vázquez J, Climent-Pascual E, Ritter C, Azcondo M T, Amador U, García-Alvarado F. Characterization of La2–xSrxCoTiO6 (0.6≤x≤1.0) series as new cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5440–5450
CrossRef Google scholar
[200]
Wang W, Pang S, Su Y, Shen X, Wang Y, Xu K, Xi X, Xiang J. The effect of calcium on the properties of SmBa1-xCaxCoCuO5+d as a cathode material for intermediate-temperature solid oxide fuel cells. Journal of the European Ceramic Society, 2017, 37(4): 1557–1562
CrossRef Google scholar
[201]
Cascos V, Troncoso L, Alonso J A. New families of Mn+-doped SrCo1–xMxO3–d perovskites performing as cathodes in solid-oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40(34): 11333–11341
CrossRef Google scholar
[202]
Zhu Z, Tao Z, Bi L, Liu W. Investigation of SmBaCuCoO5+d double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin, 2010, 45(11): 1771–1774
CrossRef Google scholar
[203]
Pang S L, Jiang X N, Li X N, Xu H X, Jiang L, Xu Q L, Shi Y C, Zhang Q Y. Structure and properties of layered-perovskite LaBa1–x Co2O5+d (x=0–0.15) as intermediate-temperature cathode material. Journal of Power Sources, 2013, 240: 54–59
CrossRef Google scholar
[204]
Dai N, Wang Z, Jiang T, Feng J, Sun W, Qiao J, Rooney D, Sun K. A new family of barium-doped Sr2Fe1.5Mo0.5O6-d perovskites for application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 268: 176–182
CrossRef Google scholar
[205]
Tsvetkova N S, Zuev A Y, Tsvetkov D S. Investigation of GdBaCo2–xFexO6-d (x = 0, 0.2)-Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2013, 243: 403–408
CrossRef Google scholar
[206]
Zhou Q, Wei W C J, Guo Y, Jia D. LaSrMnCoO5+d as cathode for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 19: 36–38
CrossRef Google scholar
[207]
Jiang X, Xu Q, Shi Y, Li X, Zhou W, Xu H, Zhang Q. Synthesis and properties of Sm3+-deficient Sm1-xBaCo2O5+d perovskite oxides as cathode materials. International Journal of Hydrogen Energy, 2014, 39(21): 10817–10823
CrossRef Google scholar
[208]
Zhen S, Sun W, Tang G, Rooney D, Sun K, Ma X. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6–d-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. International Journal of Hydrogen Energy, 2016, 41(22): 9538–9546
CrossRef Google scholar
[209]
Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+d as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876–4889
CrossRef Google scholar
[210]
Gómez-Pérez A, Yuste M, Pérez-Flores J C, Ritter C, Azcondo M T, Canales-Vázquez J, Gálvez-Sánchez M, Boulahya K, García-Alvarado F, Amador U. The role of the Co2+/Co3+ redox-pair in the properties of La2–xSrxCoTiO6 (0≤x≤0.5) perovskites as components for solid oxide fuel cells. Journal of Power Sources, 2013, 227: 309–317
CrossRef Google scholar
[211]
Wang B, Long G, Ji Y, Pang M, Meng X. Layered perovskite PrBa0.5Sr0.5CoCuO5+d as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2014, 606: 92–96
CrossRef Google scholar
[212]
Yi K, Sun L, Li Q, Xia T, Huo L, Zhao H, Li J, Lü Z, Bassat J M, Rougier A, Fourcade S, Grenier J C. Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6-d cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(24): 10228
CrossRef Google scholar
[213]
Zhou Q, Cheng Y, Li W, Yang X, Liu J, An D, Tong X, Zhong B, Wang W. Investigation of cobalt-free perovskite Sr2FeTi0.75 Mo0.25O6–d as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016, 74: 129–133
CrossRef Google scholar
[214]
Xue J, Shen Y, He T. Performance of double-proveskite YBa0.5Sr0.5Co2O5+d as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(11): 6894–6898
CrossRef Google scholar
[215]
Wang Y, Zhao X, Lü S, Meng X, Zhang Y, Yu B, Li X, Sui Y, Yang J, Fu C, Ji Y. Synthesis and characterization of SmSrCo2-x MnxO5+d (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) cathode materials for intermediate-temperature solid-oxide fuel cells. Ceramics International, 2014, 40(7): 11343–11350
CrossRef Google scholar
[216]
Lü S, Long G, Meng X, Ji Y, Lü B, Zhao H. PrBa0.5Sr0.5Co2O5+x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(7): 5914–5919
CrossRef Google scholar
[217]
Lee S J, Kim D S, Jo S H, Muralidharan P, Kim D K. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38(Sup.1): S493–496
CrossRef Google scholar
[218]
Li X, Jiang X, Xu H, Xu Q, Jiang L, Shi Y, Zhang Q. Scandium-doped PrBaCo2-xScxO6-d oxides as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38(27): 12035–12042
CrossRef Google scholar
[219]
Choi S, Shin J, Kim G. The electrochemical and thermodynamic characterization of PrBaCo2-xFexO5+d (x=0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201: 10–17
CrossRef Google scholar
[220]
Zhu C, Liu X, Yi C, Yan D, Su W. Electrochemical performance of PrBaCo2O5+d layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2008, 185(1): 193–196
CrossRef Google scholar
[221]
Tarancón A, Morata A, Dezanneau G, Skinner S J, Kilner J A, Estradé S, Hernández-Ramírez F, Peiró F, Morante J R. GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007, 174(1): 255–263
CrossRef Google scholar
[222]
Ding H, Xue X, Liu X, Meng G. High performance layered SmBa0.5Sr0.5Co2O5+d cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 194(2): 815–817
CrossRef Google scholar
[223]
Hou M, Sun W, Li P, Feng J, Yang G, Qiao J, Wang Z, Rooney D, Feng J, Sun K. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-d for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 272: 759–765
CrossRef Google scholar
[224]
Li X, Jiang X, Shi Y, Zhou W, Xu Q, Xu H, Zhang Q. One-step synthesized nano-composite cathode material of Pr0.83 BaCo1.33Sc0.5O6-d–0.17PrCoO3 for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39(27): 15039–15045
CrossRef Google scholar
[225]
Zou J, Park J, Kwak B, Yoon H, Chung J. Effect of Fe doping on PrBaCo2O5+d as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics, 2012, 206: 112–119
CrossRef Google scholar
[226]
Zhang Y, Yu B, Lu S, Meng X, Zhao X, Ji Y, Wang Y, Fu C, Liu X, Li X, Sui Y, Lang J, Yang J. Effect of Cu doping on YBaCo2O5+d as cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 134: 107–115
CrossRef Google scholar
[227]
Lü S, Long G, Ji Y, Meng X, Zhao H, Sun C. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509(6): 2824–2828
CrossRef Google scholar
[228]
Azad A K, Kim J H, Irvine J T S. Structure–property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+d (Ln=Pr, Nd) for solid oxide fuel cells. Journal of Power Sources, 2011, 196(17): 7333–7337
CrossRef Google scholar
[229]
Hu Y, Bogicevic C, Bouffanais Y, Giot M, Hernandez O, Dezanneau G. Synthesis, physical-chemical characterization and electrochemical performance of GdBaCo2–xNixO5+d (x = 0–0.8) as cathode materials for IT-SOFC application. Journal of Power Sources, 2013, 242: 50–56
CrossRef Google scholar
[230]
Xia T, Lin N, Zhao H, Huo L, Wang J, Grenier J C. Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 291–296
CrossRef Google scholar
[231]
Subardi A, Cheng M H, Fu Y P. Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+d cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(35): 20783–20790
CrossRef Google scholar
[232]
Mitchell R H. Perovskites: Modern and Ancient. Ontario, Canada: Almaz Press, 2002
[233]
Horita T, Kishimoto H, Yamaji K, Brito M E, Xiong Y, Yokokawa H, Hori Y, Miyachi I. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. Journal of Power Sources, 2009, 193(1): 194–198
CrossRef Google scholar
[234]
Tao S W, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2(5): 320–323
CrossRef Google scholar
[235]
Fu Q X, Tietz F. Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells (Weinheim), 2008, 8(5): 283–293
CrossRef Google scholar
[236]
Azad A K, Hakem A, Iskandar Petra P M. Titanium doped LSCM anode for hydrocarbon fuelled SOFCs. AIP Conference Proceedings, 2015, 070069
CrossRef Google scholar
[237]
Tao S W, Canales-Vazquez J, Irvine J T S. Structural and electrical properties of the perovskite oxide Sr2FeNbO6. Chemistry of Materials, 2004, 16(11): 2309–2316
CrossRef Google scholar
[238]
Téllez Lozano H, Druce J, Cooper S J, Kilner J A. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors? Science and Technology of Advanced Materials, 2017, 18(1): 977–986
CrossRef Google scholar
[239]
Peña-Martínez J, Marrero-López D, Ruiz-Morales J C, Savaniu C, Núñez P, Irvine J T S. Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-d at lanthanum gallate electrolytes. Chemistry of Materials, 2006, 18(4): 1001–1006
CrossRef Google scholar
[240]
Danilovic N, Luo J L, Chuang K T, Sanger A R. Ce0.9Sr0.1VOx (x=3, 4) as anode materials for H2S-containing {CH4} fueled solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 247–257
CrossRef Google scholar
[241]
Azad A K, Irvine J T S. Characterization of YSr2Fe3O8-d as electrode materials for SOFC. Solid State Ionics, 2011, 192(1): 225–228
CrossRef Google scholar
[242]
Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Double-perovskite anode materials Sr2MMoO6 (M= Co, Ni) for solid oxide fuel cells. Chemistry of Materials, 2009, 21(11): 2319–2326
CrossRef Google scholar
[243]
Ralph J M, Schoeler A C, Krumpelt M. Materials for lower temperature solid oxide fuel cells. Electrochemical Technology, 2001, 6(5): 1161–1172
[244]
Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4844
CrossRef Google scholar
[245]
Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-d, a redox-stable, efficient perovskite anode for SOFCs. Journal of the Electrochemical Society, 2004, 151(2): A252
CrossRef Google scholar
[246]
Tao S W, Irvine J T S. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-d in relation to its potential as a solid oxide fuel cell anode material. Chemistry of Materials, 2004, 16(21): 4116–4121
CrossRef Google scholar
[247]
Ruiz-Morales J C, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine J T S. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006, 439(7076): 568–571
CrossRef Google scholar
[248]
Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A, 2003, 362(1–2): 228–239
CrossRef Google scholar
[249]
Fagg D P, Kharton V V, Kovalevsky A V, Viskup A P, Naumovich E N, Frade J R. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential {SOFC} anode materials. Journal of the European Ceramic Society, 2001, 21(10–11): 1831–1835
CrossRef Google scholar
[250]
Touleva A, Yufit V, Simons S, Maskell W C, Brett D J L. A review of liquid metal anode solid oxide fuel cells. Journal of Electrochemical Science and Engineering, 2013, 3(3): 91–105
CrossRef Google scholar
[251]
Wang X, Yu B, Zhang W, Chen J, Luo X, Stephan K. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production. International Journal of Hydrogen Energy, 2012, 37(17): 12833–12838
CrossRef Google scholar
[252]
dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7
CrossRef Google scholar
[253]
Saines P J, Kennedy B J. Phase segregation in mixed Nb–Sb double perovskites Ba2LnNb1-xSbxO6-d. Journal of Solid State Chemistry, 2008, 181(2): 298–305
CrossRef Google scholar
[254]
Tonus F, Bahout M, Dorcet V, Sharma R K, Djurado E, Paofai S, Smith R I, Skinner S J. A-site order–disorder in the NdBaMn2O5+d SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11078–11085
CrossRef Google scholar
[255]
Deng Z Q, Smit J P, Niu H J, Evans G, Li M R, Xu Z L, Claridge J B, Rosseinsky M J. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6-d as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154–5162
CrossRef Google scholar
[256]
Afroze S, Abdalla A M, Radenahmad N, Synthesis, structural and thermal properties of double perovskite NdSrMn2O6 as potential anode materials for solid oxide fuel cells. In: 7th Brunei International Conference on Engineering and Technology 2017 (BICET 2017), Antalya, Turkey, 2018
[257]
Falcón H, Barbero J A, Araujo G, Casais M T, Martı́nez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A2FeMoO6-d (A=Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45
CrossRef Google scholar
[258]
Philipp B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A=Sr, Ba, and Ca). Physical Review B: Condensed Matter and Materials Physics, 2003, 68(14): 144431
CrossRef Google scholar
[259]
Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah H Q H H, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1–xTixNbO6–d as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673
CrossRef Google scholar
[260]
Zhang L, He T. Performance of double-perovskite Sr2-x SmxMgMoO6-d as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359
CrossRef Google scholar
[261]
Zhang L L, Zhou Q J, He Q, He T. Double-perovskites A2FeMoO6-d (A= Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366
CrossRef Google scholar
[262]
Pickett W E. Spin-density-functional-based search for half-metallic antiferromagnets. Physical Review. B, 1998, 57(17): 10613–10619
CrossRef Google scholar

Acknowledgements

The University Graduate Scholarship (UGS) of Universiti Brunei Darussalam is gratefully acknowledged. This work was supported by the project No. UBD/RSCH/URC/RG(6)2018/002.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-VerlagGmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2919 KB)

Accesses

Citations

Detail

Sections
Recommended

/