Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

Shammya AFROZE , AfizulHakem KARIM , Quentin CHEOK , Sten ERIKSSON , Abul K. AZAD

Front. Energy ›› 2019, Vol. 13 ›› Issue (4) : 770 -797.

PDF (2919KB)
Front. Energy ›› 2019, Vol. 13 ›› Issue (4) : 770 -797. DOI: 10.1007/s11708-019-0651-x
REVIEW ARTICLE
REVIEW ARTICLE

Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

Author information +
History +
PDF (2919KB)

Abstract

Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

Keywords

double perovskites / electrode materials / hydrocarbon fuel / solid oxide fuel cells

Cite this article

Download citation ▾
Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Front. Energy, 2019, 13(4): 770-797 DOI:10.1007/s11708-019-0651-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209

[2]

Andújar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322

[3]

Abdalla A M, Hossain S, Petra P M, Ghasemi M, Azad A K. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018, 12(1): 1–24

[4]

Abdalla A M, Hossain S, Nisfindy O B, Azad A T, Dawood M, Azad A K. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conversion and Management, 2018, 165: 602–627

[5]

Wang S, Jiang S P. Prospects of fuel cell technologies. National Science Review, 2017, 4(2): 163–166

[6]

Garche J, Ju rissen L. Applications of fuel cell technology: status and perspectives. Electrochemical Society Interface, 2015, 24(2): 39–43

[7]

U.S. Department of Energy. Fuel cell technologies office. 2015, available at energy.gov website

[8]

Johnson Matthey P L C. Fuel cell applications–fuel cell today. 2018-11-22, available at fuelcelltoday.com webite

[9]

Financial Times. Japan is betting future cars will use hydrogen fuel cells. 2018-03-27, available at ft.com website

[10]

Nissan Motor Corporation. Runnig on e-Bio: Nissan’s solid oxide fuel cell system. 2016-06-14, available at nissan-global.com website

[11]

INSIDEEVS. Navigant: fuel cell vehicle sales to exceed 228000 units by 2024. 2015-12-27, available at insideevs.com website

[12]

Ang S M C, Fraga E S, Brandon N P, Samsatli N J, Brett D J L. Fuel cell systems optimisation–methods and strategies. International Journal of Hydrogen Energy, 2011, 36(22): 14678–14703

[13]

Stambouli A B, Traversa E, Stambouli A. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455

[14]

Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Reviews on solid oxide fuel cell technology. Engineering Journal (New York), 2009, 13(1): 65–84

[15]

Minh N Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1-4): 271–277

[16]

Bao C, Wang Y, Feng D L, Jiang Z, Zhang X. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Progress in Energy and Combustion Science, 2018, 66: 83–140

[17]

Rits V, Kypreos S, Wokaun A. Evaluating the diffusion of fuel-cell cars in the China markets. IATSS Research, 2004, 28(1): 34–46

[18]

Venture Radar. SOFC | Venture Radar Search. 2018, available at ventureradar.com website

[19]

Business Wire.Top emerging trends in the global solid oxide fuel cell market| Technavio. 2018-04-04, available at businesswire.com website

[20]

Markets and Markets. Solid oxide fuel cell market by type (planar and tubular), application (power generation, combined heat & power, and military), end-use (data centers, commercial & retail, and APU), region (north America, Asia Pacific, and Europe)–global forecast to 2025. 2017, available at marketsandmarkets.com website

[21]

Abdalla A M, Hossain S, Zhou J, Petra P M I, Erikson S, Savaniu C D, Irvine J T S, Azad A K. NdBaMn2O5+d layered perovskite as an active cathode material for solid oxide fuel cells. Ceramics International, 2017, 43(17): 15932–15938

[22]

Taroco H A, Santos J A F, Domingues R Z, Matencio T. Ceramic materials for solid oxide fuel cells. 2011, available at intechopen.com website

[23]

Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209

[24]

Liu Q, Dong X, Xiao G, Zhao F, Chen F. A Novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478–5482

[25]

Huang Y H. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257

[26]

Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004, 3(1): 17–27

[27]

Zhang L, He T. Performance of double-perovskite Sr2–xSmxMgMoO6–d as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359

[28]

Steele B C, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

[29]

Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152–153: 405–410

[30]

Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170–173

[31]

Han D, Liu X, Zeng F, Qian J, Wu T, Zhan Z. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Scientific Reports, 2012, 2(1): 462

[32]

Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(6745): 649–651

[33]

Park S, Vohs J, Gorte R. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267

[34]

McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 2004, 104(10): 4845–4866

[35]

Abdalla A M, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368

[36]

Safran. Fuel cells: green energy on board. 2018-11-22, available at safran-group.com website

[37]

Reza M S, Ahmed A, Caesarendra W, Abu Bakar M S, Shams S, Saidur R, Aslfattahi N, Azad A K. Acacia holosericea: an invasive species for bio-char, bio-oil, and biogas production. Bioengineering Multidisciplinary Digital Publishing Institute, 2019, 6(2): 33

[38]

Justin Fitzgerald and Nancy O’Bryan. NASA– Fuel cells: a better energy source for earth and space. 2005-11-02, available at nasa.gov website

[39]

Singhal S. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1–4): 305–313

[40]

Tao S W, Irvine J T S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Advanced Materials, 2006, 18(12): 1581–1584

[41]

Radenahmad N, Afif A, Petra P I, Rahman S M H, Eriksson S G, Azad A K. Proton-conducting electrolytes for direct methanol and direct urea fuel cells–a state-of-the-art review. Renewable & Sustainable Energy Reviews, 2016, 57: 1347–1358

[42]

Malavasi L, Fisher C A J, Islam M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010, 39(11): 4370–4387

[43]

Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764

[44]

Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y M. Rational SOFC material design: new advances and tools. Materials Today, 2011, 14(11): 534–546

[45]

Cologna M. Advances in the production of planar and micro-tubular solid oxide fuel cells. Dissertation for the Doctoral Degree. Trento: University of Trento

[46]

Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455

[47]

Hatchwell C E, Sammes N M, Kendall K. Cathode current-collectors for a novel tubular SOFC design. Journal of Power Sources, 1998, 70(1): 85–90

[48]

National Energy Technology Laboratory. Solid oxide fuel cell. 2018-11-26, available at netl.doe.gov website

[49]

Vaillant unveils wall-mounted CHP unit, using staxera SOFC. Fuel Cells Bulletin, 2011, 5: 4

[50]

Kupecki J. Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. International Journal of Hydrogen Energy, 2015, 40(35): 12009–12022

[51]

SOLID power. For private households–SOLID power. 2018-11-26, available at solidpower.com website

[52]

Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018

[53]

Cava R J, Batlogg B, Krajewski J J, Farrow R, Rupp L W, White A E, Short K, Peck W F, Kometani T. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature, 1988, 332(6167): 814–816

[54]

Zhang Z, Li J, Zhou W, Yang C, Cao Q, Wang D, Du Y. Mechanism of enhancement in magnetoresistance properties of manganite perovskite ceramics by current annealing. Ceramics International, 2018, 44(4): 3760–3764

[55]

Afroze S, Binti Haji Bakar A N, Reza M S, Salam M A. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: imitating forearm motion. IET Conference Publications, 2018

[56]

Schlom D G, Chen L Q, Pan X, Schmehl A, Zurbuchen M A. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 2008, 91(8): 2429–2454

[57]

Locock A J, Mitchell R H. Perovskite classification: an excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup. Computers & Geosciences, 2018, 113: 106–114

[58]

Li R, Yu C, Shen S. Partial oxidation of methane to syngas using lattice oxygen of La1–xSrxFeO3 perovskite oxide catalysts instead of molecular oxygen. Journal of Natural Gas Chemistry, 2002, 11: 137–144

[59]

El-Ads E. Perovskite nanomaterials–synthesis, characterization, and applications. InTech, 2016: 107–151

[60]

Azad A K. Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A2FeBO6 (A= Ca, Sr, Ba, La; B= W, Mo, Cr). 2004, available at lib.ugent.be website

[61]

Azad A K, Mellergård A, Eriksson S G, Ivanov S A, Eriksen J, Rundlöf H. Preparation, crystal and magnetic structure of the double perovskite Ba2FeWO6. Applied Physics A: Materials Science & Processing, 2002, 74(Sup.1): s763–s765

[62]

Azad A, Eriksson S G. Formation of a cubic Sr2MnWO6 phase at elevated temperature: a neutron powder diffraction study. Solid State Communications, 2003, 126(9): 503–508

[63]

Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82

[64]

Azad A K, Ivanov S, Eriksson S G, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic properties of the double perovskite Sr2MnWO6. Journal of Magnetism and Magnetic Materials, 2001, 237(2): 124–134

[65]

Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Nuclear and magnetic structure of Ca2MnWO6: a neutron powder diffraction study. Materials Research Bulletin, 2001, 36(13–14): 2485–2496

[66]

Azad A K, Eriksson S G, Ivanov S A, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic characterisation of the double perovskites AA′MnWO6 (AA′ = Ba2, SrBa, Sr2, SrCa and Ca2). Ferroelectrics, 2002, 269(1): 105–110

[67]

Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257

[68]

Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on {H2} and {CH4} fuels. Journal of Power Sources, 2011, 196(4): 1738–1743

[69]

Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8071–8074

[70]

Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Pérez-Coll D, Aranda M A G, Núñez P. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6-d anode. Materials Research Bulletin, 2008, 43(8–9): 2441–2450

[71]

Bernuy-Lopez C, Allix M, Bridges C A, Claridge J B, Rosseinsky M J. Sr2MgMoO6-d: structure, phase stability, and cation site order control of reduction. Chemistry of Materials, 2007, 19(5): 1035–1043

[72]

Vasala S, Lehtimäki M, Huang Y H, Yamauchi H, Goodenough J B, Karppinen M. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6-d (M=Mg, Mn, Fe, Co, Ni, Zn). Journal of Solid State Chemistry, 2010, 183(5): 1007–1012

[73]

Azizi F, Kahoul A, Azizi A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484(1–2): 555–560

[74]

Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. Synthesis and characterization of Sr2MgMoO6-d : an anode material for the solid oxide fuel cell. Journal of the Electrochemical Society, 2006, 153(7): A1266–A1272

[75]

Xie Z, Zhao H, Du Z, Chen T. Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6-d as an anode material for solid oxide fuel cells. Journal of Physical Chemistry, 2012, 116: 9734–9743

[76]

Pan X, Wang Z, He B, Wang S, Wu X, Xia C. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38(10): 4108–4115

[77]

Xie Z, Zhao H, Chen T, Zhou X, Du Z. Synthesis and electrical properties of Al-doped Sr2MgMoO6–d as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(12): 7257–7264

[78]

Goldschmidt V M. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485

[79]

Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32(5): 751–767

[80]

Rebaza A V G, Toro C E D, Téllez D A L, Roa-Rojas J. Electronic structure of the double perovskite Ba2Er(Nb,Sb)O6. Journal of Physics: Conference Series, 2014, 480: 012041

[81]

Fu W T, IJdo D J W. X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln=La, Pr, Nd and Sm). Journal of Solid State Chemistry, 2005, 178(7): 2363–2367

[82]

Gopalakrishnan J, Chattopadhyay A, Ogale SB, Venkatesan T, Greene R L, Millis A J, Ramesha K, Hannoyer B, Marest G. Metallic and nonmetallic double perovskites : a case study of A2FeReO6 (A= Ca, Sr, Ba). 2000, 62(14): 9538–9542

[83]

Davis M J, Mugavero S J III, Glab K I, Smith M D, zur Loye H C. The crystal growth and characterization of the lanthanide-containing double perovskites Ln2NaIrO6 (Ln=La, Pr, Nd). Solid State Sciences, 2004, 6(5): 413–417

[84]

Yamamura K, Wakeshima M, Hinatsu Y. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M=W, Re, Os). Journal of Solid State Chemistry, 2006, 179(3): 605–612

[85]

Gens R, Fuger J, Morss L R, Williams C W. Thermodynamics of actinide perovskite-type oxides III. Molar enthalpies of formation of B2MAnO6 (M=Mg, Ca, or Sr; An=U, Np, or Pu) and M3PuO6 (M=Ba or Sr). Journal of Chemical Thermodynamics, 1985, 17(6): 561–573

[86]

Fu W T, IJdo D J W. Re-examination of the structure of Ba2MIrO6 (M= La, Y): space group revised. Journal of Alloys and Compounds, 2005, 394(1–2): 10–13

[87]

Bharti C, Sinha T P. Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sciences, 2010, 12(4): 498–502

[88]

Shaheen R, Bashir J. Ca2CoNbO6: a new monoclinically distorted double perovskite. Solid State Sciences, 2010, 12(8): 1496–1499

[89]

Gemmill W R, Smith M D, zur Loye H C. Synthesis, structural characterization, and magnetic properties of the antiferromagnetic double perovskites Ln2LiOsO6 (Ln=La, Pr, Nd, Sm). Journal of Solid State Chemistry, 2006, 179(6): 1750–1756

[90]

Zhang Y, Ji V. Half-metallic ferromagnetic nature of the double perovskite Pb2FeMoO6 from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1116–1121

[91]

Mugavero S J III, Smith M D, zur Loye H C. The crystal growth and magnetic properties of Ln2LiIrO6 (Ln=La, Pr, Nd, Sm, Eu). Journal of Solid State Chemistry, 2005, 178(1): 200–206

[92]

Zhou Q, Kennedy B J, Howard C J, Elcombe M M, Studer A J. Structural phase transitions in A2–xSrxNiWO6 (A= Ca or Ba, 0≤x≤2) double perovskites. Chemistry of Materials, 2005, 17(21): 5357–5365

[93]

Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1-2): 77–82

[94]

Strandbakke R, Cherepanov V A, Zuev A Y, Tsvetkov D S, Argirusis C, Sourkouni G, Prünte S, Norby T. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278: 120–132

[95]

Philipp J B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A2CrWO6. Physical Review. B, 2003, 68(14): 144431

[96]

Popov G, Greenblatt M, Croft M. Large effects of A-site average cation size on the properties of the double perovskites Ba2-xSrx MnReO6 : a d5-d1 system. Physical Review. B, 2003, 67(2): 024406

[97]

Westerburg W, Lang O, Ritter C, Felser C, Tremel W, Jakob G. Magnetic and structural properties of the double-perovskite Ca2FeReO6. Solid State Communications, 2002, 122(3–4): 201–206

[98]

Falcón H, Barbero J A, Araujo G, Casaisc M T, Martı́nez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A2FeMoO6-d (A=Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45

[99]

Retuerto M, Alonso J A, García-Hernández M, Martínez-Lope M J. Synthesis, structure and magnetic properties of the new double perovskite Ca2CrSbO6. Solid State Communications, 2006, 139(1): 19–22

[100]

Hu R, Ding R, Chen J, Hu J, Zhang Y. Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catalysis Communications, 2012, 21: 38–41

[101]

Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018

[102]

Parfitt D, Chroneos A, Tarancón A, Kilner J A. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+d. Journal of Materials Chemistry, 2011, 21(7): 2183–2186

[103]

Presto S, Kumar P, Varma S, Viviani M, Singh P. Electrical conductivity of NiMo–based double perovskites under SOFC anodic conditions. International Journal of Hydrogen Energy, 2018, 43(9): 4528–4533

[104]

Fu D, Jin F, He T. A-site calcium-doped Pr1-xCaxBaCo2O5+d double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141

[105]

Anderson M T, Greenwood K B, Taylor G A, Poeppelmeier K. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, 22(3): 197–233

[106]

Serrate D, De Teresa J M, Algarabel P A, Marquina C, Blasco J, Ibarra M R, Galibert J. Magnetoelastic coupling in Sr2(Fe1-xCrx)ReO6 double perovskites. Journal of Physics Condensed Matter, 2007, 19(43): 436226

[107]

Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2-xCuxO5+d at elevated temperatures. Solid State Ionics, 2015, 274: 17–23

[108]

Niu B, Jin F, Yang X, Feng T, He T. Resisting coking and sulfur poisoning of double perovskite. 2018, 43(6): 3280–3290

[109]

Kim J H, Manthiram A. Layered NdBaCo2-xNixO5+d perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28): 7551–7557

[110]

Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003

[111]

Battle P D, Jones C W. The crystal and magnetic structures of Sr2LuRuO6, Ba2YRuO6, and Ba2LuRuO6. Journal of Solid State Chemistry, 1989, 78(1): 108–116

[112]

Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Materials Research Bulletin, 2001, 36(12): 2215–2228

[113]

Azad A K, Eriksson S G, Mellergård A, Ivanov S A, Eriksen J, Rundlöf H. A study on the nuclear and magnetic structure of the double perovskites A2FeWO6 (A= Sr, Ba) by neutron powder diffraction and reverse Monte Carlo modeling. Materials Research Bulletin, 2002, 37(11): 1797–1813

[114]

Anderson M T, Poeppelmeier K R. La2CuSnO6: a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482

[115]

Glazer A M. The classification of tilted octahedra in perovskites. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1972, 28(11): 3384–3392

[116]

Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003

[117]

Prellier W, Smolyaninova V, Biswas A, Galley C, Greene R L, Ramesha K, Gopalakrishnan J. Properties of the ferrimagnetic double perovskites A2FeReO6 (A= Ba and Ca). Journal of Physics Condensed Matter, 2000, 12(6): 965–973

[118]

Anderson M T, Poeppelmeier K R. Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482

[119]

Azad A K, Basheer F, Iskandar Petra P M, Ghosh A, Irvine J T S. Structure-property relationship in Mg-doped La0.75Sr0.25Mn0.5 Cr0.5O3 anode for solid oxide fuel cell. In: 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 2014: 1115

[120]

Wang Y, Zhang H, Chen F, Xia C. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203: 34–41

[121]

Ghosh A, Azad A K, Irvine J T S. Study of Ga doped LSCM as an anode for SOFC. ECS Transactions, 2011, 35(1): 1337–1343

[122]

Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8

[123]

Xia C, Liu M. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs. Solid State Ionics, 2002, 152–153: 423–430

[124]

Brett D J L, Atkinson A, Brandon N P, Skinner S J. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, 37(8): 1568

[125]

Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267

[126]

Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 2003, 216(1–2): 477–486

[127]

Shri Prakash B, Senthil Kumar S, Aruna S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable & Sustainable Energy Reviews, 2014, 36: 149–179

[128]

Huan Y, Li Y, Yin B, Ding D, Wei T. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A= Ca, Sr, Ba). Journal of Power Sources, 2017, 359: 384–390

[129]

Zheng K, Świerczek K, Zając W, Klimkowicz A. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ionics, 2014, 257: 9–16

[130]

Rath M K, Lee K T. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-d as an electrode material for symmetric solid oxide fuel cells. Electrochimica Acta, 2016, 212: 678–685

[131]

dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7

[132]

Kumar P, Presto S, Sinha A S K, Varma S, Viviani M, Singh P. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. Journal of Alloys and Compounds, 2017, 725: 1123–1129

[133]

Ding H, Tao Z, Liu S, Yang Y. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-d double perovskite as anode material. Journal of Power Sources, 2016, 327: 573–579

[134]

Sun Y F, Zhang Y Q, Hua B, Behnamian Y, Li J, Cui S H, Li J H, Luo J L. Molybdenum doped Pr0.5Ba0.5MnO3-d (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. Journal of Power Sources, 2016, 301: 237–241

[135]

Tomkiewicz A C, Tamimi M A, Huq A, McIntosh S. Structural analysis of PrBaMn2O5+d under SOFC anode conditions by in-situ neutron powder diffraction. Journal of Power Sources, 2016, 330: 240–245

[136]

Xu L, Yin Y M, Zhou N, Wang Z, Ma Z F. Sulfur tolerant redox stable layered perovskite SrLaFeO4-d as anode for solid oxide fuel cells. Electrochemistry Communications, 2017, 76: 51–54

[137]

Wang F Y, Zhong G B, Luo S, Xia L, Fang L H, Song X, Hao X, Yan G. Porous Sr2MgMo1–xVxO6–d ceramics as anode materials for SOFCs using biogas fuel. Catalysis Communications, 2015, 67: 108–111

[138]

He B, Wang Z, Zhao L, Pan X, Wu X, Xia C. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells. Journal of Power Sources, 2013, 241: 627–633

[139]

Escudero M J, Gómez deParada I, Fuerte A, Daza L. Study of Sr2Mg(Mo0.8Nb0.2)O6-d as anode material for solid oxide fuel cells using hydrocarbons as fuel. Journal of Power Sources, 2013, 243: 654–660

[140]

Zhang Q, Wei T, Huang Y H. Electrochemical performance of double-perovskite Ba2MMoO6 (M=Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 198: 59–65

[141]

Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Martín-Sedeño M C, Núñez P. High temperature phase transition in SOFC anodes based on Sr2MgMoO6-d. Journal of Solid State Chemistry, 2009, 182(5): 1027–1034

[142]

Han Z, Wang Y, Yang Y, Li L, Yang Z, Han M. High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−d anodes toward sulfur resistance. Journal of Alloys and Compounds, 2017, 703: 258–263

[143]

Gansor P, Xu C, Sabolsky K, Zondlo J W, Sabolsky E M. Phosphine impurity tolerance of Sr2MgMoO6-d composite SOFC anodes. Journal of Power Sources, 2012, 198: 7–13

[144]

Li H, Zhao Y, Wang Y, Li Y. Sr2Fe2-xMoxO6-d perovskite as an anode in a solid oxide fuel cell: effect of the substitution ratio. Catalysis Today, 2016, 259: 417–422

[145]

Zhang L, Zhou Q, He Q, He T. Double-perovskites A2FeMoO6-d (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366

[146]

Jiang L, Liang G, Han J, Huang Y. Effects of Sr-site deficiency on structure and electrochemical performance in Sr2MgMoO6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270: 441–448

[147]

Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6-d as SOFC anode. Solid State Ionics, 2010, 180(40): 1672–1682

[148]

Howell T G, Kuhnell C P, Reitz T L, Sukeshini A M, Singh R N. {A2MgMoO6} (A= Sr,Ba) for use as sulfur tolerant anodes. Journal of Power Sources, 2013, 231: 279–284

[149]

Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. Journal of Power Sources, 2011, 196(4): 1738–1743

[150]

Vasala S, Lehtimäki M, Haw S C, Chen J M, Liu R S, Yamauchi H, Karppinen M. Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6-d SOFC-anode material. Solid State Ionics, 2010, 181(15–16): 754–759

[151]

Liu Q, Bugaris D E, Xiao G, Chmara M, Ma S, zur Loye H C, Amiridis M D, Chen F. Sr2Fe1.5Mo0.5O6-d as a regenerative anode for solid oxide fuel cells. Journal of Power Sources, 2011, 196(22): 9148–9153

[152]

Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah H Q H H, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1-xTixNbO6-d as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673

[153]

Martínez-Coronado R, Aguadero A, Alonso J A, Fernández-Díaz M T. Reversible oxygen removal and uptake in the La2ZnMnO6 double perovskite: performance in symmetrical SOFC cells. Solid State Sciences, 2013, 18: 64–70

[154]

Li W, Cheng Y, Zhou Q, Wei T, Li Z, Yan H, Wang Z, Han X. Evaluation of double perovskite Sr2FeTiO6-d as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2015, 41(9): 12393–12400

[155]

Ding H, Sullivan N P, Ricote S. Double perovskite Ba2FeMoO6-d as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 2017, 306: 97–103

[156]

Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics, 2014, 262: 354–358

[157]

Song Y, Zhong Q, Tan W, Pan C. Effect of cobalt-substitution Sr2Fe1.5-xCoxMo0.5O6-d for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochimica Acta, 2014, 139: 13–20

[158]

Tarancón A, Marrero-López D, Peña-Martínez J, Ruizmorales J, Nunez P. Effect of phase transition on high-temperature electrical properties of GdBaCo2O5+x layered perovskite. Solid State Ionics, 2008, 179(17–18): 611–618

[159]

Song Y, Zhong Q, Wang D, Xu Y, Tan W. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6-d and hydrogen sulfide in symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22266–22272

[160]

Wright J H, Virkar A V, Liu Q, Chen F. Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6-d as a possible solid oxide fuel cell electrode. Journal of Power Sources, 2013, 237: 13–18

[161]

Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+d (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689

[162]

Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000

[163]

Jiang S P. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 2003, 124(2): 390–402

[164]

Carter S, Selcuk A, Chater R J, Kajda J, Kilner J A, Steele B C H. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics, 1992, 53–56: 597–605

[165]

Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 2007, 17(24): 2500

[166]

Choi S, Kucharczyk C J, Liang Y, Zhang X, Takeuchi I, Ji H I, Haile S M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3(3): 202–210

[167]

Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144

[168]

S, Meng X, Ji Y, Fu C, Sun C, Zhao H. Electrochemical performances of NdBa0.5Sr0.5Co2O5+x as potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8094–8096

[169]

Jiang X, Wang J, Jia G, Qie Z, Shi Y, Idrees A, Zhang Q, Jiang L. Characterization of PrBa0.92CoCuO6–d as a potential cathode material of intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2017, 42(9): 6281–6289

[170]

Tomkiewicz A C, Meloni M, McIntosh S. On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics, 2014, 260: 55–59

[171]

Li H, Sun L P, Li Q, Xia T, Zhao H, Huo L H, Bassat J M, Rougier A, Fourcade S, Grenier J C. Electrochemical performance of double perovskite Pr2NiMnO6 as a potential IT-SOFC cathode. International Journal of Hydrogen Energy, 2015, 40(37): 12761–12769

[172]

Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+d cathode material for proton-conducting IT-SOFC. Ceramics International, 2015, 41(8): 10276–10280

[173]

Jin F J, Liu J, Niu B, Ta L, Li R, Wang Y, Yang X, He T. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+d cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439–21449

[174]

Fu D, Jin F, He T. A-site calcium-doped Pr1–xCaxBaCo2O5+d double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141

[175]

Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a brief review. Journal of Power Sources, 2015, 298: 46–67

[176]

Mao X, Yu T, Ma G. Performance of cobalt-free double-perovskite NdBaFe2–xMnxO5+d cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 2015, 637: 286–290

[177]

Pang S, Wang W, Chen T, Wang Y, Xu K, Shen X, Xi X, Fan J. The effect of potassium on the properties of PrBa1-xCo2O5+d (x = 0.00–0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(31): 13705–13714

[178]

Xia L N, He Z P, Huang X W, Yu Y. Synthesis and properties of SmBaCo2–xNixO5+d perovskite oxide for IT-SOFC cathodes. Ceramics International, 2016, 42(1): 1272–1280

[179]

Jin F, Xu H, Long W, Shen Y, He T. Characterization and evaluation of double perovskites LnBaCoFeO5+d (Ln= Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10–18

[180]

Seymour I D, Tarancón A, Chroneos A, Parfitt D, Kilner J A, Grimes R W. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics, 2012, 216: 41–43

[181]

Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2–xCuxO5+d at elevated temperatures. Solid State Ionics, 2015, 274: 17–23

[182]

Saccoccio M, Jiang C, Gao Y, Chen D, Ciucci F. Nb-substituted PrBaCo2O5+d as a cathode for solid oxide fuel cells: a systematic study of structural, electrical, and electrochemical properties. International Journal of Hydrogen Energy, 2017, 42(30): 19204–19215

[183]

Jin F, Li L, He T. NdBaCo2/3Fe2/3Cu2/3O5+d double perovskite as a novel cathode material for CeO2- and LaGaO3-based solid oxide fuel cells. Journal of Power Sources, 2015, 273: 591–599

[184]

Li L, Jin F, Shen Y, He T. Cobalt-free double perovskite cathode GdBaFeNiO5+d and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682–692

[185]

Li S, Xia T, Li Q, Sun L, Huo L, Zhao H. A-site Ba-deficiency layered perovskite EuBa1–xCo2O6–d cathodes for intermediate-temperature solid oxide fuel cells: electrochemical properties and oxygen reduction reaction kinetics. International Journal of Hydrogen Energy, 2017, 42(38): 24412–24425

[186]

Jin F, Shen Y, Wang R, He T. Double-perovskite PrBaCo2/3 Fe2/3Cu2/3O5+d as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244–251

[187]

Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6–d double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750

[188]

Jin F, Liu J, Shen Y, He T. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+dSm0.2-Ce0.8O1.9 (Ln=Pr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483–491

[189]

Xue J, Shen Y, He T. Double-perovskites YBaCo2–xFexO5+d cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196(8): 3729–3735

[190]

Zhou Q, He T, Ji Y. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185(2): 754–758

[191]

Kong X, Liu G, Yi Z, Ding X. NdBaCu2O5+d and NdBa0.5Sr0.5 Cu2O5+d layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46): 16477–16483

[192]

Wei B, Chen K, Wang C C, Z, Jiang S P. Performance degradation of SmBaCo2O5+d cathode induced by chromium deposition for solid oxide fuel cells. Electrochimica Acta, 2015, 174: 327–331

[193]

S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang L, Li X, Sui Y, Yang J. Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6 O5+d as cathode material for intermediate-temperature solid oxide fuel cells. Ceramics International, 2014, 40(9, Part B): 14919–14925

[194]

Kuroda C, Zheng K, Swierczek K. Characterization of novel GdBa0.5Sr0.5Co2–xFexO5+d perovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 2013, 38(2): 1027–1038

[195]

Subardi A, Chen C C, Cheng M H, Chang W K, Fu Y P. Electrical, thermal and electrochemical properties of SmBa1-xSrxCo2O5+d cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2016, 204: 118–127

[196]

Yu L, Chen Y, Gu Q, Tian D, Lu X, Meng G, Lin B. Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+d as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 2015, 33(5): 519–523 (in Chinese)

[197]

Donazzi A, Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G, Sora I N. Evaluation of Ba deficient NdBaCo2O5+d oxide as cathode material for IT-SOFC. Electrochimica Acta, 2015, 182: 573–587

[198]

Che X, Shen Y, Li H, He T. Assessment of LnBaCo1.6Ni0.4O5+d (Ln= Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 222: 288–293

[199]

Pérez-Flores J C, Gómez-Pérez A, Yuste M, Canales-Vázquez J, Climent-Pascual E, Ritter C, Azcondo M T, Amador U, García-Alvarado F. Characterization of La2–xSrxCoTiO6 (0.6≤x≤1.0) series as new cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5440–5450

[200]

Wang W, Pang S, Su Y, Shen X, Wang Y, Xu K, Xi X, Xiang J. The effect of calcium on the properties of SmBa1-xCaxCoCuO5+d as a cathode material for intermediate-temperature solid oxide fuel cells. Journal of the European Ceramic Society, 2017, 37(4): 1557–1562

[201]

Cascos V, Troncoso L, Alonso J A. New families of Mn+-doped SrCo1–xMxO3–d perovskites performing as cathodes in solid-oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40(34): 11333–11341

[202]

Zhu Z, Tao Z, Bi L, Liu W. Investigation of SmBaCuCoO5+d double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin, 2010, 45(11): 1771–1774

[203]

Pang S L, Jiang X N, Li X N, Xu H X, Jiang L, Xu Q L, Shi Y C, Zhang Q Y. Structure and properties of layered-perovskite LaBa1–x Co2O5+d (x=0–0.15) as intermediate-temperature cathode material. Journal of Power Sources, 2013, 240: 54–59

[204]

Dai N, Wang Z, Jiang T, Feng J, Sun W, Qiao J, Rooney D, Sun K. A new family of barium-doped Sr2Fe1.5Mo0.5O6-d perovskites for application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 268: 176–182

[205]

Tsvetkova N S, Zuev A Y, Tsvetkov D S. Investigation of GdBaCo2–xFexO6-d (x = 0, 0.2)-Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2013, 243: 403–408

[206]

Zhou Q, Wei W C J, Guo Y, Jia D. LaSrMnCoO5+d as cathode for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 19: 36–38

[207]

Jiang X, Xu Q, Shi Y, Li X, Zhou W, Xu H, Zhang Q. Synthesis and properties of Sm3+-deficient Sm1-xBaCo2O5+d perovskite oxides as cathode materials. International Journal of Hydrogen Energy, 2014, 39(21): 10817–10823

[208]

Zhen S, Sun W, Tang G, Rooney D, Sun K, Ma X. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6–d-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. International Journal of Hydrogen Energy, 2016, 41(22): 9538–9546

[209]

Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+d as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876–4889

[210]

Gómez-Pérez A, Yuste M, Pérez-Flores J C, Ritter C, Azcondo M T, Canales-Vázquez J, Gálvez-Sánchez M, Boulahya K, García-Alvarado F, Amador U. The role of the Co2+/Co3+ redox-pair in the properties of La2–xSrxCoTiO6 (0≤x≤0.5) perovskites as components for solid oxide fuel cells. Journal of Power Sources, 2013, 227: 309–317

[211]

Wang B, Long G, Ji Y, Pang M, Meng X. Layered perovskite PrBa0.5Sr0.5CoCuO5+d as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2014, 606: 92–96

[212]

Yi K, Sun L, Li Q, Xia T, Huo L, Zhao H, Li J, Z, Bassat J M, Rougier A, Fourcade S, Grenier J C. Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6-d cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(24): 10228

[213]

Zhou Q, Cheng Y, Li W, Yang X, Liu J, An D, Tong X, Zhong B, Wang W. Investigation of cobalt-free perovskite Sr2FeTi0.75 Mo0.25O6–d as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016, 74: 129–133

[214]

Xue J, Shen Y, He T. Performance of double-proveskite YBa0.5Sr0.5Co2O5+d as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(11): 6894–6898

[215]

Wang Y, Zhao X, S, Meng X, Zhang Y, Yu B, Li X, Sui Y, Yang J, Fu C, Ji Y. Synthesis and characterization of SmSrCo2-x MnxO5+d (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) cathode materials for intermediate-temperature solid-oxide fuel cells. Ceramics International, 2014, 40(7): 11343–11350

[216]

S, Long G, Meng X, Ji Y, B, Zhao H. PrBa0.5Sr0.5Co2O5+x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(7): 5914–5919

[217]

Lee S J, Kim D S, Jo S H, Muralidharan P, Kim D K. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38(Sup.1): S493–496

[218]

Li X, Jiang X, Xu H, Xu Q, Jiang L, Shi Y, Zhang Q. Scandium-doped PrBaCo2-xScxO6-d oxides as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38(27): 12035–12042

[219]

Choi S, Shin J, Kim G. The electrochemical and thermodynamic characterization of PrBaCo2-xFexO5+d (x=0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201: 10–17

[220]

Zhu C, Liu X, Yi C, Yan D, Su W. Electrochemical performance of PrBaCo2O5+d layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2008, 185(1): 193–196

[221]

Tarancón A, Morata A, Dezanneau G, Skinner S J, Kilner J A, Estradé S, Hernández-Ramírez F, Peiró F, Morante J R. GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007, 174(1): 255–263

[222]

Ding H, Xue X, Liu X, Meng G. High performance layered SmBa0.5Sr0.5Co2O5+d cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 194(2): 815–817

[223]

Hou M, Sun W, Li P, Feng J, Yang G, Qiao J, Wang Z, Rooney D, Feng J, Sun K. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-d for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 272: 759–765

[224]

Li X, Jiang X, Shi Y, Zhou W, Xu Q, Xu H, Zhang Q. One-step synthesized nano-composite cathode material of Pr0.83 BaCo1.33Sc0.5O6-d–0.17PrCoO3 for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39(27): 15039–15045

[225]

Zou J, Park J, Kwak B, Yoon H, Chung J. Effect of Fe doping on PrBaCo2O5+d as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics, 2012, 206: 112–119

[226]

Zhang Y, Yu B, Lu S, Meng X, Zhao X, Ji Y, Wang Y, Fu C, Liu X, Li X, Sui Y, Lang J, Yang J. Effect of Cu doping on YBaCo2O5+d as cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 134: 107–115

[227]

S, Long G, Ji Y, Meng X, Zhao H, Sun C. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509(6): 2824–2828

[228]

Azad A K, Kim J H, Irvine J T S. Structure–property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+d (Ln=Pr, Nd) for solid oxide fuel cells. Journal of Power Sources, 2011, 196(17): 7333–7337

[229]

Hu Y, Bogicevic C, Bouffanais Y, Giot M, Hernandez O, Dezanneau G. Synthesis, physical-chemical characterization and electrochemical performance of GdBaCo2–xNixO5+d (x = 0–0.8) as cathode materials for IT-SOFC application. Journal of Power Sources, 2013, 242: 50–56

[230]

Xia T, Lin N, Zhao H, Huo L, Wang J, Grenier J C. Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 291–296

[231]

Subardi A, Cheng M H, Fu Y P. Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+d cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(35): 20783–20790

[232]

Mitchell R H. Perovskites: Modern and Ancient. Ontario, Canada: Almaz Press, 2002

[233]

Horita T, Kishimoto H, Yamaji K, Brito M E, Xiong Y, Yokokawa H, Hori Y, Miyachi I. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. Journal of Power Sources, 2009, 193(1): 194–198

[234]

Tao S W, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2(5): 320–323

[235]

Fu Q X, Tietz F. Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells (Weinheim), 2008, 8(5): 283–293

[236]

Azad A K, Hakem A, Iskandar Petra P M. Titanium doped LSCM anode for hydrocarbon fuelled SOFCs. AIP Conference Proceedings, 2015, 070069

[237]

Tao S W, Canales-Vazquez J, Irvine J T S. Structural and electrical properties of the perovskite oxide Sr2FeNbO6. Chemistry of Materials, 2004, 16(11): 2309–2316

[238]

Téllez Lozano H, Druce J, Cooper S J, Kilner J A. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors? Science and Technology of Advanced Materials, 2017, 18(1): 977–986

[239]

Peña-Martínez J, Marrero-López D, Ruiz-Morales J C, Savaniu C, Núñez P, Irvine J T S. Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-d at lanthanum gallate electrolytes. Chemistry of Materials, 2006, 18(4): 1001–1006

[240]

Danilovic N, Luo J L, Chuang K T, Sanger A R. Ce0.9Sr0.1VOx (x=3, 4) as anode materials for H2S-containing {CH4} fueled solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 247–257

[241]

Azad A K, Irvine J T S. Characterization of YSr2Fe3O8-d as electrode materials for SOFC. Solid State Ionics, 2011, 192(1): 225–228

[242]

Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Double-perovskite anode materials Sr2MMoO6 (M= Co, Ni) for solid oxide fuel cells. Chemistry of Materials, 2009, 21(11): 2319–2326

[243]

Ralph J M, Schoeler A C, Krumpelt M. Materials for lower temperature solid oxide fuel cells. Electrochemical Technology, 2001, 6(5): 1161–1172

[244]

Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4844

[245]

Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-d, a redox-stable, efficient perovskite anode for SOFCs. Journal of the Electrochemical Society, 2004, 151(2): A252

[246]

Tao S W, Irvine J T S. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-d in relation to its potential as a solid oxide fuel cell anode material. Chemistry of Materials, 2004, 16(21): 4116–4121

[247]

Ruiz-Morales J C, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine J T S. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006, 439(7076): 568–571

[248]

Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A, 2003, 362(1–2): 228–239

[249]

Fagg D P, Kharton V V, Kovalevsky A V, Viskup A P, Naumovich E N, Frade J R. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential {SOFC} anode materials. Journal of the European Ceramic Society, 2001, 21(10–11): 1831–1835

[250]

Touleva A, Yufit V, Simons S, Maskell W C, Brett D J L. A review of liquid metal anode solid oxide fuel cells. Journal of Electrochemical Science and Engineering, 2013, 3(3): 91–105

[251]

Wang X, Yu B, Zhang W, Chen J, Luo X, Stephan K. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production. International Journal of Hydrogen Energy, 2012, 37(17): 12833–12838

[252]

dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7

[253]

Saines P J, Kennedy B J. Phase segregation in mixed Nb–Sb double perovskites Ba2LnNb1-xSbxO6-d. Journal of Solid State Chemistry, 2008, 181(2): 298–305

[254]

Tonus F, Bahout M, Dorcet V, Sharma R K, Djurado E, Paofai S, Smith R I, Skinner S J. A-site order–disorder in the NdBaMn2O5+d SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11078–11085

[255]

Deng Z Q, Smit J P, Niu H J, Evans G, Li M R, Xu Z L, Claridge J B, Rosseinsky M J. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6-d as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154–5162

[256]

Afroze S, Abdalla A M, Radenahmad N, Synthesis, structural and thermal properties of double perovskite NdSrMn2O6 as potential anode materials for solid oxide fuel cells. In: 7th Brunei International Conference on Engineering and Technology 2017 (BICET 2017), Antalya, Turkey, 2018

[257]

Falcón H, Barbero J A, Araujo G, Casais M T, Martı́nez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A2FeMoO6-d (A=Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45

[258]

Philipp B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A=Sr, Ba, and Ca). Physical Review B: Condensed Matter and Materials Physics, 2003, 68(14): 144431

[259]

Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah H Q H H, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1–xTixNbO6–d as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673

[260]

Zhang L, He T. Performance of double-perovskite Sr2-x SmxMgMoO6-d as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359

[261]

Zhang L L, Zhou Q J, He Q, He T. Double-perovskites A2FeMoO6-d (A= Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366

[262]

Pickett W E. Spin-density-functional-based search for half-metallic antiferromagnets. Physical Review. B, 1998, 57(17): 10613–10619

RIGHTS & PERMISSIONS

Higher Education Press and Springer-VerlagGmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2919KB)

15692

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/