A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

Front. Energy ›› 2019, Vol. 13 ›› Issue (2) : 325 -338.

PDF (767KB)
Front. Energy ›› 2019, Vol. 13 ›› Issue (2) : 325 -338. DOI: 10.1007/s11708-019-0618-y
REVIEW ARTICLE
REVIEW ARTICLE

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Author information +
History +
PDF (767KB)

Abstract

Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

Keywords

PEM fuel cell / gas diffusion electrode(GDE) / gas diffusion layer(GDL) / membrane electrode assembly / durability / fuel cell catalyst

Cite this article

Download citation ▾
Arunkumar JAYAKUMAR. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack. Front. Energy, 2019, 13(2): 325-338 DOI:10.1007/s11708-019-0618-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jayakumar A, Chalmers A, Lie T T. Review of prospects for adoption of fuel cell electric vehicles in New Zealand. IET Electrical Systems in Transportation, 2017, 7(4): 259–266

[2]

Jayakumar A. An assessment on polymer electrolyte membrane fuel cell stack components. Applied Physical Chemistry with Multidisciplinary Approaches, 2018, 3: 23–49

[3]

Ay M, Midilli A, Dincer I. Exergetic performance analysis of a PEM fuel cell. International Journal of Energy Research, 2006, 30(5): 307–321

[4]

Sasikumar G, Muthumeenal A, Pethaiah S S, Nachiappan N, Balaji R. Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. International Journal of Hydrogen Energy, 2008, 33(21): 5905–5910

[5]

Long N V, Thi C M, Nogami M, Ohtaki M. Novel Pt and Pd based core-shell catalysts with critical new issues of heat treatment, stability and durability for proton exchange membrane fuel cells and direct methanol fuel cells. In: Czerwinski F, ed. Heat Treatment—Conventional and Novel Applications. InTech, 2012

[6]

Kumar J A, Kalyani P, Saravanan R. Studies on PEM fuel cells using various alcohols for low power applications. International Journal of Electrochemical Science, 2008, 3: 961

[7]

Holton O T, Stevenson J W. The role of platinum in proton exchange membrane fuel cells. Platinum Metals Review, 2013, 57(4): 259–271

[8]

Wu B, Zhao M, Shi W, Liu W, Liu J, Xing D, Yao Y, Hou Z, Ming P, Gu J, Zou Z. The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests. International Journal of Hydrogen Energy, 2014, 39(26): 14381–14390

[9]

Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G, Jones D J. Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. Journal of Power Sources, 2013, 233: 216–230

[10]

Kusoglu A, Weber A Z. Mechanical aspects of membrane durability in PEM fuel cells. In: ECS Meeting Abstracts, 2014, 18: 799

[11]

Liu W, Ruth K, Rusch G. The membrane durability in PEM fuel cells. Journal of New Materials for Electrochemical Systems, 2001, 4(4): 227–232

[12]

Huang X, Solasi R, Zou Y U, Feshler M, Reifsnider K, Condit D, Burlatsky S, Madden T. Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(16): 2346–2357

[13]

Kinumoto T, Nagano K, Yamamoto Y, Tsumura T, Toyoda M. Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells. Journal of Power Sources, 2014, 249: 503–508

[14]

Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell—a review. Journal of Power Sources, 2007, 163(2): 755–767

[15]

Antunes R A, Oliveira M C, Ett G, Ett V. Corrosion of metal bipolar plates for PEM fuel cells: a review. International Journal of Hydrogen Energy, 2010, 35(8): 3632–3647

[16]

Kumar G S, Raja M, Parthasarathy S. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochimica Acta, 1995, 40(3): 285–290

[17]

Sasikumar G, Ihm J W, Ryu H. Optimum Nafion content in PEM fuel cell electrodes. Electrochimica Acta, 2004, 50(2–3): 601–605

[18]

Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk T E. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735–1737

[19]

Narayanan R, El-Sayed M A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Letters, 2004, 4(7): 1343–1348

[20]

Nørskov J K, Bligaard T, Logadottir A, Bahn S, Hansen L B, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen C J H. Universality in heterogeneous catalysis. Journal of Catalysis, 2002, 209(2): 275–278

[21]

Wikipedia. Sabatier principle. 2018

[22]

Gasteiger H A, Gu W, Makharia R, Mathias M F, Sompalli B. Beginning-of-life MEA performance—efficiency loss contributions. In: Vielstich W, Lamm A, Gasteiger H A, Yokokawa H, eds. Handbook of Fuel Cells. John Wiley & Sons, 2010

[23]

Park S, Lee J W, Popov B N. A review of gas diffusion layer in PEM fuel cells: materials and designs. International Journal of Hydrogen Energy, 2012, 37(7): 5850–5865

[24]

Jayakumar A, Sethu S P, Ramos M, Robertson J, Al-Jumaily A. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics, 2015, 21(1): 1–8

[25]

Öztürk A, Fıçıcılar B, Eroğlu İ, Bayrakçeken Yurtcan A. Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts. International Journal of Hydrogen Energy, 2017, 42(33): 21226–21249

[26]

Xie X, Wang R, Jiao K, Zhang G, Zhou J, Du Q. Investigation of the effect of micro-porous layer on PEM fuel cell cold start operation. Renewable Energy, 2018, 117: 125–134

[27]

Simon C, Kartouzian D, Müller D, Wilhelm F, Gasteiger H A. Impact of microporous layer pore properties on liquid water transport in PEM fuel cells: carbon black type and perforation. Journal of the Electrochemical Society, 2017, 164(14): F1697–F1711

[28]

Velayutham G, Kaushik J, Rajalakshmi N, Dhathathreyan K S. Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested, ambient pressure. Fuel Cells (Weinheim), 2007, 7(4): 314–318

[29]

Cindrella L, Kannan A M, Lin J F, Saminathan K, Ho Y, Lin C W, Wertz J. Gas diffusion layer for proton exchange membrane fuel cells—a review. Journal of Power Sources, 2009, 194(1): 146–160

[30]

Janssen G J, Overvelde M L. Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient. Journal of Power Sources, 2001, 101(1): 117–125

[31]

Lobato J, Cañizares P, Rodrigo M A, Úbeda D, Pinar F J, Linares J J. Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC–effect of carbon content. Fuel Cells (Weinheim), 2010, 10(5): 770–777

[32]

Paganin V, Ticianelli E, Gonzalez E R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996, 26(3): 297–304

[33]

Lee H K, Park J H, Kim D Y, Lee T H. A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC. Journal of Power Sources, 2004, 131(1–2): 200–206

[34]

Rajalakshmi N, Velayutham G, Ramya K, Subramaniyam C K, Dhathathreyan K S. Characterisation and optimisation of low cost activated carbon fabric as a substrate layer for PEMFC electrodes. In: ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti, Michigan, USA, 2005, 169–173

[35]

Giorgi L, Antolini E, Pozio A, Passalacqua E. Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochimica Acta, 1998, 43(24): 3675–3680

[36]

Thoben B, Siebke A. Influence of different gas diffusion layers on the water management of the PEFC cathode. Journal of New Materials for Electrochemical Systems, 2004, 7(1): 13–20

[37]

Staffell I, Green R. How does wind farm performance decline with age? Renewable Energy, 2014, 66: 775–786

[38]

Tian T, Tang J, Guo W, Pan M. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell. Frontiers in Energy, 2017, 11(3): 326–333

[39]

Wilkinson D, Steck A. General progress in the research of solid polymer fuel cell technology at Ballard. In: International Symposium on New Materials for Fuel Cells and Modern Battery Systems, Montreal, Canada, 1997, 6–10

[40]

Büchi F N, Inaba M, Schmidt T J, eds. Polymer Electrolyte Fuel Cell Durability. New York: Springer, 2009

[41]

Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51

[42]

Lin J H, Chen W H, Su S H, Su Y J, Ko T H. Washing experiment of the gas diffusion layer in a proton-exchange membrane fuel cell. Energy & Fuels, 2008, 22(4): 2533–2538

[43]

Rice C A, Urchaga P, Pistono A O, McFerrin B W, McComb B T, Hu J. Platinum dissolution in fuel cell electrodes: enhanced degradation from surface area assessment in automotive accelerated stress tests. Journal of the Electrochemical Society, 2015, 162(10): F1175–F1180

[44]

Borup R L, Davey J R, Garzon F H, Wood D L, Inbody M A. PEM fuel cell electrocatalyst durability measurements. Journal of Power Sources, 2006, 163(1): 76–81

[45]

Úbeda D, Cañizares P, Rodrigo M A, Pinar F J, Lobato J. Durability study of HT-PEMFC through current distribution measurements and the application of a model. International Journal of Hydrogen Energy, 2014, 39(36): 21678–21687

[46]

Villers D, Sun S H, Serventi A M, Dodelet J P, Désilets S. Characterization of Pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen. Journal of Physical Chemistry B, 2006, 110(51): 25916–25925

[47]

Ball S C, Hudson S L, Thompsett D, Theobald B. An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures. Journal of Power Sources, 2007, 171(1): 18–25

[48]

Shao Y, Yin G, Gao Y, Shi P. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 2006, 153(6): A1093–A1097

[49]

Spernjak D, Fairweather J D, Rockward T, Mukundan R, Borup R. Characterization of carbon corrosion in a segmented PEM fuel cell. ECS Transactions, 2011, 41(1): 741–750

[50]

Zhang J, ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. London: Springer Science & Business Media, 2008

[51]

Shao Y, Yin G, Gao Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007, 171(2): 558–566

[52]

Qi Z, Buelte S. Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells. Journal of Power Sources, 2006, 161(2): 1126–1132

[53]

Zhai Y, Zhang H, Liu G, Hu J, Yi B. Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test. Journal of the Electrochemical Society, 2007, 154(1): B72–B76

[54]

Patrick U, Rice C A. Ex-situ accelerated stress tests of Pt/C cathode catalysts. The importance of standard test procedures. In: 224th ECS Meeting Abstracts, 2013

[55]

Sheng W, Chen S, Vescovo E, Shao-Horn Y. Size influence on the oxygen reduction reaction activity and instability of supported Pt nanoparticles. Journal of the Electrochemical Society, 2011, 159(2): B96–B103

[56]

Huang J, Li Z, Zhang J. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Frontiers in Energy, 2017, 11(3): 334–364

[57]

Wang Y, Wang C Y, Chen K S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 2007, 52(12): 3965–3975

[58]

Millichamp J, Mason T J, Neville T P, Rajalakshmi N, Jervis R, Shearing P R, Brett D J L. Mechanisms and effects of mechanical compression and dimensional change in polymer electrolyte fuel cells–a review. Journal of Power Sources, 2015, 284: 305–320

[59]

Meng H, Wang C Y. Electron transport in PEFCs. Journal of the Electrochemical Society, 2004, 151(3): A358–A367

[60]

Zhang S, Yuan X, Wang H, Merida W, Zhu H, Shen J, Wu S, Zhang J. A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy, 2009, 34(1): 388–404

[61]

Lee C, Mérida W. Gas diffusion layer durability under steady-state and freezing conditions. Journal of Power Sources, 2007, 164(1): 141–153

[62]

Wang Y, Gundevia M. Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers. International Journal of Heat and Mass Transfer, 2013, 60: 134–142

[63]

Wu J, Yuan X Z, Martin J J, Wang H, Zhang J, Shen J, Wu S, Merida W. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008, 184(1): 104–119

[64]

Chen G, Zhang H, Ma H, Zhong H. Electrochemical durability of gas diffusion layer under simulated proton exchange membrane fuel cell conditions. International Journal of Hydrogen Energy, 2009, 34(19): 8185–8192

[65]

Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951

[66]

Seidenberger K, Wilhelm F, Schmitt T, Lehnert W, Scholta J. Estimation of water distribution and degradation mechanisms in polymer electrolyte membrane fuel cell gas diffusion layers using a 3D Monte Carlo model. Journal of Power Sources, 2011, 196(12): 5317–5324

[67]

Bazylak A, Sinton D, Liu Z S, Djilali N. Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. Journal of Power Sources, 2007, 163(2): 784–792

[68]

Gurau V, Bluemle M J, De Castro E S, Tsou Y M, Zawodzinski T A Jr, Mann J A Jr. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. absolute permeability. Journal of Power Sources, 2007, 165(2): 793–802

[69]

Gurau V, Mann J A. Effect of Interfacial phenomena at the gas diffusion layer-channel interface on the water evolution in a PEMFC. Journal of the Electrochemical Society, 2010, 157(4): B512–B521

[70]

Gurau V, Zawodzinski T A, Mann J A. Two-phase transport in PEM fuel cell cathodes. Journal of Fuel Cell Science and Technology, 2008, 5(2): 021009

[71]

Hartnig C, Manke I, Kuhn R, Kardjilov N, Banhart J, Lehnert W. Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells. Applied Physics Letters, 2008, 92(13): 134106

[72]

Pasaogullari U, Wang C Y. Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2005, 152(2): A380–A390

[73]

Meng H, Wang C Y. Model of two-phase flow and flooding dynamics in polymerelectrolyte fuel cells. Journal of the Electrochemical Society, 2005, 152(9): A1733–A1741

[74]

Pasaogullari U, Wang C Y. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2004, 151(3): A399–A406

[75]

Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(5): 1808–1825

[76]

Mayrhofer K J, Blizanac B B, Arenz M, Stamenkovic V R, Ross P N, Markovic N M. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. Journal of Physical Chemistry B, 2005, 109(30): 14433–14440

[77]

De Zoubov N, Vanleugenhaghe C, Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solution. New York: Pergamon Press, 1966

[78]

Kwon K, Jung Y, Ku H, Lee K, Kim S, Sohn J, Pak C. CO-tolerant Pt–BeO as a novel anode electrocatalyst in proton exchange membrane fuel cells. Catalysts, 2016, 6(5): 68

[79]

Skoulidas A I, Ackerman D M, Johnson J K, Sholl D S. Rapid transport of gases in carbon nanotubes. Physical Review Letters, 2002, 89(18): 185901

[80]

Antolini E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009, 88(1–2): 1–24

[81]

Meier J C, Galeano C, Katsounaros I, Witte J, Bongard H J, Topalov A A, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer K J J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein Journal of Nanotechnology, 2014, 5(1): 44–67

[82]

Yu P T, Gu W, Makharia R, Wagnerc F T, Gasteigerc H A. The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Transactions, 2006, 3(1): 797–809

[83]

Kou R, Shao Y, Wang D, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C, Lin Y, Wang Y, Aksay I A, Liu J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 2009, 11(5): 954–957

[84]

Shao Y, Liu J, Wang Y, Lin Y. Novel catalyst support materials for PEM fuel cells: current status and future prospects. Journal of Materials Chemistry, 2009, 19(1): 46–59

[85]

Antolini E, Gonzalez E R. Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics, 2009, 180(9–10): 746–763

[86]

Antolini E, Gonzalez E R. Tungsten-based materials for fuel cell applications. Applied Catalysis B: Environmental, 2010, 96(3–4): 245–266

[87]

d’Arbigny J B, Taillades G, Marrony M, Jones D J, Rozière J. Hollow microspheres with a tungsten carbide kernel for PEMFC application. Chemical Communications, 2011, 47(28): 7950–7952

[88]

Yin S, Mu S, Lv H, Cheng N, Pan M, Fu Z. A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Applied Catalysis B: Environmental, 2010, 93(3–4): 233–240

[89]

Kimmel Y C, Yang L, Kelly T G, Rykov S A, Chen J G. Theoretical prediction and experimental verification of low loading of platinum on titanium carbide as low-cost and stable electrocatalysts. Journal of Catalysis, 2014, 312: 216–220

[90]

You D J, Jin X, Kim J H, Jin S A, Lee S, Choi K H, Baek W J, Pak C, Kim J M. Development of stable electrochemical catalysts using ordered mesoporous carbon/silicon carbide nanocomposites. International Journal of Hydrogen Energy, 2015, 40(36): 12352–12361

[91]

Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo M A. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198: 516–524

[92]

Halalay I C, Merzougui B, Carpenter M K, Swathirajan S, Gregory C. Garabedian G C, Mance A M, Cai M. Supports for fuel cell catalyst. US Patent, 7622216B2, 2009

[93]

Oyama S T. Introduction to the chemistry of transition metal carbides and nitrides. In: Oyama S T, ed. The Chemistry of Transition Metal Carbides and Nitrides. Dordrecht: Springer, 1996, 1–27

[94]

Sundar Pethaiah S, Paruthimal Kalaignan G, Ulaganathan M, Arunkumar J. Preparation of durable nanocatalyzed MEA for PEM fuel cell applications. Ionics, 2011, 17(4): 361–366

[95]

Sundar Pethaiah S, Paruthimal Kalaignan G, Sasikumar G, Ulaganathan M. Evaluation of platinum catalyzed MEAs for PEM fuel cell applications. Solid State Ionics. 2011, 190(1): 88–92

[96]

Sundar Pethaiah S, Paruthimal Kalaignan G, Sasikumar G, Ulaganathan M, Swaminathan V. Development of nano-catalyzed membrane for PEM fuel cell applications. Journal of Solid State Electrochemistry, 2013, 17(11): 2917–2925

[97]

Lobato J, Zamora H, Plaza J, Rodrigo M A. Composite titanium silicon carbide as a promising catalyst support for high-temperature proton-exchange membrane fuel cell electrodes. ChemCatChem, 2016, 8(4): 848–854

[98]

Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. Aging mechanisms and lifetime of PEFC and DMFC. Journal of Power Sources, 2004, 127(1–2): 127–134

[99]

Long N V, Yang Y, Thi C M, Minh N V, Cao Y Q, Nogami M. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy, 2013, 2(5): 636–676

[100]

Jayakumar A, Ramos M, Al-Jumaily A M. A novel 3D printing technique to synthesise gas diffusion layer for PEM fuel cell application. In: ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, USA, 2016

[101]

Jayakumar A, Singamneni S, Ramos M, Al-Jumaily A, Pethaiah S. Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered. Materials (Basel), 2017, 10(7): 796

[102]

Wang C, Wang S, Peng L, Zhang J, Shao Z, Huang J, Sun C, Ouyang M, He X. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies, 2016, 9(8): 603

[103]

Wood D L III, Borup R L. Durability aspects of gas-diffusion and microporous layers. In: Büchi F N, Inaba M, Schmid T J, eds. Polymer Electrolyte Fuel Cell Durability. New York: Springer, 2009, 159–195

[104]

Ahadi M, Tam M, Saha M S, Stumper J, Bahrami M. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: part 1–experimental study. Journal of Power Sources, 2017, 354: 207–214

[105]

Gurau V, Liu H, Kakac S. Two-dimensional model for proton exchange membrane fuel cells. AIChE Journal., 1998, 44(11): 2410–2422

[106]

Djilali N, Lu D. Influence of heat transfer on gas and water transport in fuel cells. International Journal of Thermal Sciences, 2002, 41(1): 29–40

[107]

Rowe A, Li X. Mathematical modeling of proton exchange membrane fuel cells. Journal of Power Sources, 2001, 102(1–2): 82–96

[108]

Nguyen P T, Berning T, Djilali N. Computational model of a PEM fuel cell with serpentine gas flow channels. Journal of Power Sources, 2004, 130(1–2): 149–157

[109]

Ju H, Meng H, Wang C Y. A single-phase, non-isothermal model for PEM fuel cells. International Journal of Heat and Mass Transfer, 2005, 48(7): 1303–1315

[110]

Khandelwal M, Mench M M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 2006, 161(2): 1106–1115

[111]

Vie P J, Kjelstrup S. Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochimica Acta, 2004, 49(7): 1069–1077

[112]

Ramousse J, Didierjean S, Lottin O, Maillet D. Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion Layers. International Journal of Thermal Sciences, 2008, 47(1): 1–6

[113]

Lee Y, Kim B, Kim Y, Li X. Effects of a microporous layer on the performance degradation of proton exchange membrane fuel cells through repetitive freezing. Journal of Power Sources, 2011, 196(4): 1940–1947

[114]

Hottinen T, Mikkola M, Mennola T, Lund P. Titanium sinter as gas diffusion backing in PEMFC. Journal of Power Sources, 2003, 118(1–2): 183–188

[115]

Zhang F Y, Advani S G, Prasad A K. Performance of a metallic gas diffusion layer for PEM fuel cells. Journal of Power Sources, 2008, 176(1): 293–298

[116]

Trefilov A M, Tiliakos A, Serban E C, Ceaus C, Iordache S M, Voinea S, Balan A. Carbon xerogel as gas diffusion layer in PEM fuel cells. International Journal of Hydrogen Energy, 2017, 42(15): 10448–10454

[117]

Morgan J M, Datta R. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance. Journal of Power Sources, 2014, 251: 269–278

[118]

Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo M A. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198: 516–524

[119]

Ito H, Heo Y, Ishida M, Nakano A, Someya S, Munakata T. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells. Journal of Power Sources, 2017, 342: 393–404

[120]

Schonvogel D, Rastedt M, Wagner P, Wark M, Dyck A. Impact of accelerated stress tests on high temperature PEMFC degradation. Fuel Cells (Weinheim), 2016, 16(4): 480–489

[121]

Wang Y, Chen K S. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number. Journal of Power Sources, 2016, 315: 224–235

[122]

Janssen G J. A phenomenological model of water transport in a proton exchange membrane fuel cell. Journal of the Electrochemical Society, 2001, 148(12): A1313–A1323

[123]

Jayakumar A, Ramos M, Al-Jumaily A. A novel fuzzy schema to control the temperature and humidification of PEM fuel cell system. In: ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum, San Diego, California, USA, 2015

[124]

Saidur R, Kazi S N, Hossain M S, Rahman M M, Mohammed H A. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable & Sustainable Energy Reviews, 2011, 15(1): 310–323

[125]

Kocjan A, Logar M, Shen Z. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Scientific Reports, 2017, 7(1): 2541

[126]

Seo J K, Khetan A, Seo M H, Kim H, Han B. First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. Journal of Power Sources, 2013, 238: 137–143

[127]

Wang G X, Yang L, Wang J Z, Liu H K, Dou S X. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. Journal of Nanoscience and Nanotechnology, 2005, 5(7): 1135–1140

[128]

Martin S, Martinez-Vazquez B, Garcia-Ybarra P L, Castillo J L. Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method. Journal of Power Sources, 2013, 229: 179–184

[129]

Martinez-Vazquez B, Sanchez D G, Castillo J L, Friedrich K A, Garcia-Ybarra P L. Scaling-up and characterization of ultralow-loading MEAs made-up by electrospray. International Journal of Hydrogen Energy, 2015, 40(15): 5384–5389

[130]

Steele B C H, Heinzel A. Materials for fuel-cell technologies. In: Dusastre V ed. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review. Nature Publishing Group, 2011, 224–231

[131]

Singh R, Sui P C, Wong K H, Kjeang E, Knights S, Djilali N. Modeling the effect of chemical membrane degradation on PEMFC performance. Journal of the Electrochemical Society, 2018, 165(6): F3328–F3336

[132]

Zhang J, Litteer B A, Coms F D, Makharia R. Recoverable performance loss due to membrane chemical degradation in PEM fuel cells. Journal of the Electrochemical Society, 2012, 159(7): F287–F293

[133]

Asset T, Chattot R, Maillard F, Dubau L, Ahmad Y, Batisse N, Dubois M, Guérin K, Labbé F, Metkemeijer R, Berthon-Fabry S, Chatenet M. Activity and durability of platinum-based electrocatalysts supported on bare or fluorinated nanostructured carbon substrates. Journal of the Electrochemical Society, 2018, 165(6): F3346–F3358

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (767KB)

5199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/