A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

PDF(767 KB)
PDF(767 KB)
Front. Energy ›› 2019, Vol. 13 ›› Issue (2) : 325-338. DOI: 10.1007/s11708-019-0618-y
REVIEW ARTICLE

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Author information +
History +

Abstract

Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

Keywords

PEM fuel cell / gas diffusion electrode(GDE) / gas diffusion layer(GDL) / membrane electrode assembly / durability / fuel cell catalyst

Cite this article

Download citation ▾
Arunkumar JAYAKUMAR. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack. Front. Energy, 2019, 13(2): 325‒338 https://doi.org/10.1007/s11708-019-0618-y

References

[1]
Jayakumar A, Chalmers A, Lie T T. Review of prospects for adoption of fuel cell electric vehicles in New Zealand. IET Electrical Systems in Transportation, 2017, 7(4): 259–266
CrossRef Google scholar
[2]
Jayakumar A. An assessment on polymer electrolyte membrane fuel cell stack components. Applied Physical Chemistry with Multidisciplinary Approaches, 2018, 3: 23–49
CrossRef Google scholar
[3]
Ay M, Midilli A, Dincer I. Exergetic performance analysis of a PEM fuel cell. International Journal of Energy Research, 2006, 30(5): 307–321
CrossRef Google scholar
[4]
Sasikumar G, Muthumeenal A, Pethaiah S S, Nachiappan N, Balaji R. Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. International Journal of Hydrogen Energy, 2008, 33(21): 5905–5910
CrossRef Google scholar
[5]
Long N V, Thi C M, Nogami M, Ohtaki M. Novel Pt and Pd based core-shell catalysts with critical new issues of heat treatment, stability and durability for proton exchange membrane fuel cells and direct methanol fuel cells. In: Czerwinski F, ed. Heat Treatment—Conventional and Novel Applications. InTech, 2012
[6]
Kumar J A, Kalyani P, Saravanan R. Studies on PEM fuel cells using various alcohols for low power applications. International Journal of Electrochemical Science, 2008, 3: 961
[7]
Holton O T, Stevenson J W. The role of platinum in proton exchange membrane fuel cells. Platinum Metals Review, 2013, 57(4): 259–271
CrossRef Google scholar
[8]
Wu B, Zhao M, Shi W, Liu W, Liu J, Xing D, Yao Y, Hou Z, Ming P, Gu J, Zou Z. The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests. International Journal of Hydrogen Energy, 2014, 39(26): 14381–14390
CrossRef Google scholar
[9]
Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G, Jones D J. Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. Journal of Power Sources, 2013, 233: 216–230
CrossRef Google scholar
[10]
Kusoglu A, Weber A Z. Mechanical aspects of membrane durability in PEM fuel cells. In: ECS Meeting Abstracts, 2014, 18: 799
[11]
Liu W, Ruth K, Rusch G. The membrane durability in PEM fuel cells. Journal of New Materials for Electrochemical Systems, 2001, 4(4): 227–232
[12]
Huang X, Solasi R, Zou Y U, Feshler M, Reifsnider K, Condit D, Burlatsky S, Madden T. Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(16): 2346–2357
CrossRef Google scholar
[13]
Kinumoto T, Nagano K, Yamamoto Y, Tsumura T, Toyoda M. Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells. Journal of Power Sources, 2014, 249: 503–508
CrossRef Google scholar
[14]
Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell—a review. Journal of Power Sources, 2007, 163(2): 755–767
CrossRef Google scholar
[15]
Antunes R A, Oliveira M C, Ett G, Ett V. Corrosion of metal bipolar plates for PEM fuel cells: a review. International Journal of Hydrogen Energy, 2010, 35(8): 3632–3647
CrossRef Google scholar
[16]
Kumar G S, Raja M, Parthasarathy S. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochimica Acta, 1995, 40(3): 285–290
CrossRef Google scholar
[17]
Sasikumar G, Ihm J W, Ryu H. Optimum Nafion content in PEM fuel cell electrodes. Electrochimica Acta, 2004, 50(2–3): 601–605
CrossRef Google scholar
[18]
Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk T E. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735–1737
CrossRef Google scholar
[19]
Narayanan R, El-Sayed M A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Letters, 2004, 4(7): 1343–1348
CrossRef Google scholar
[20]
Nørskov J K, Bligaard T, Logadottir A, Bahn S, Hansen L B, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen C J H. Universality in heterogeneous catalysis. Journal of Catalysis, 2002, 209(2): 275–278
CrossRef Google scholar
[21]
Wikipedia. Sabatier principle. 2018
[22]
Gasteiger H A, Gu W, Makharia R, Mathias M F, Sompalli B. Beginning-of-life MEA performance—efficiency loss contributions. In: Vielstich W, Lamm A, Gasteiger H A, Yokokawa H, eds. Handbook of Fuel Cells. John Wiley & Sons, 2010
[23]
Park S, Lee J W, Popov B N. A review of gas diffusion layer in PEM fuel cells: materials and designs. International Journal of Hydrogen Energy, 2012, 37(7): 5850–5865
CrossRef Google scholar
[24]
Jayakumar A, Sethu S P, Ramos M, Robertson J, Al-Jumaily A. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics, 2015, 21(1): 1–8
CrossRef Google scholar
[25]
Öztürk A, Fıçıcılar B, Eroğlu İ, Bayrakçeken Yurtcan A. Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts. International Journal of Hydrogen Energy, 2017, 42(33): 21226–21249
CrossRef Google scholar
[26]
Xie X, Wang R, Jiao K, Zhang G, Zhou J, Du Q. Investigation of the effect of micro-porous layer on PEM fuel cell cold start operation. Renewable Energy, 2018, 117: 125–134
CrossRef Google scholar
[27]
Simon C, Kartouzian D, Müller D, Wilhelm F, Gasteiger H A. Impact of microporous layer pore properties on liquid water transport in PEM fuel cells: carbon black type and perforation. Journal of the Electrochemical Society, 2017, 164(14): F1697–F1711
CrossRef Google scholar
[28]
Velayutham G, Kaushik J, Rajalakshmi N, Dhathathreyan K S. Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested, ambient pressure. Fuel Cells (Weinheim), 2007, 7(4): 314–318
CrossRef Google scholar
[29]
Cindrella L, Kannan A M, Lin J F, Saminathan K, Ho Y, Lin C W, Wertz J. Gas diffusion layer for proton exchange membrane fuel cells—a review. Journal of Power Sources, 2009, 194(1): 146–160
CrossRef Google scholar
[30]
Janssen G J, Overvelde M L. Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient. Journal of Power Sources, 2001, 101(1): 117–125
CrossRef Google scholar
[31]
Lobato J, Cañizares P, Rodrigo M A, Úbeda D, Pinar F J, Linares J J. Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC–effect of carbon content. Fuel Cells (Weinheim), 2010, 10(5): 770–777
CrossRef Google scholar
[32]
Paganin V, Ticianelli E, Gonzalez E R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996, 26(3): 297–304
CrossRef Google scholar
[33]
Lee H K, Park J H, Kim D Y, Lee T H. A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC. Journal of Power Sources, 2004, 131(1–2): 200–206
CrossRef Google scholar
[34]
Rajalakshmi N, Velayutham G, Ramya K, Subramaniyam C K, Dhathathreyan K S. Characterisation and optimisation of low cost activated carbon fabric as a substrate layer for PEMFC electrodes. In: ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti, Michigan, USA, 2005, 169–173
[35]
Giorgi L, Antolini E, Pozio A, Passalacqua E. Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochimica Acta, 1998, 43(24): 3675–3680
CrossRef Google scholar
[36]
Thoben B, Siebke A. Influence of different gas diffusion layers on the water management of the PEFC cathode. Journal of New Materials for Electrochemical Systems, 2004, 7(1): 13–20
[37]
Staffell I, Green R. How does wind farm performance decline with age? Renewable Energy, 2014, 66: 775–786
CrossRef Google scholar
[38]
Tian T, Tang J, Guo W, Pan M. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell. Frontiers in Energy, 2017, 11(3): 326–333
CrossRef Google scholar
[39]
Wilkinson D, Steck A. General progress in the research of solid polymer fuel cell technology at Ballard. In: International Symposium on New Materials for Fuel Cells and Modern Battery Systems, Montreal, Canada, 1997, 6–10
[40]
Büchi F N, Inaba M, Schmidt T J, eds. Polymer Electrolyte Fuel Cell Durability. New York: Springer, 2009
[41]
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
CrossRef Google scholar
[42]
Lin J H, Chen W H, Su S H, Su Y J, Ko T H. Washing experiment of the gas diffusion layer in a proton-exchange membrane fuel cell. Energy & Fuels, 2008, 22(4): 2533–2538
CrossRef Google scholar
[43]
Rice C A, Urchaga P, Pistono A O, McFerrin B W, McComb B T, Hu J. Platinum dissolution in fuel cell electrodes: enhanced degradation from surface area assessment in automotive accelerated stress tests. Journal of the Electrochemical Society, 2015, 162(10): F1175–F1180
CrossRef Google scholar
[44]
Borup R L, Davey J R, Garzon F H, Wood D L, Inbody M A. PEM fuel cell electrocatalyst durability measurements. Journal of Power Sources, 2006, 163(1): 76–81
CrossRef Google scholar
[45]
Úbeda D, Cañizares P, Rodrigo M A, Pinar F J, Lobato J. Durability study of HT-PEMFC through current distribution measurements and the application of a model. International Journal of Hydrogen Energy, 2014, 39(36): 21678–21687
CrossRef Google scholar
[46]
Villers D, Sun S H, Serventi A M, Dodelet J P, Désilets S. Characterization of Pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen. Journal of Physical Chemistry B, 2006, 110(51): 25916–25925
CrossRef Google scholar
[47]
Ball S C, Hudson S L, Thompsett D, Theobald B. An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures. Journal of Power Sources, 2007, 171(1): 18–25
CrossRef Google scholar
[48]
Shao Y, Yin G, Gao Y, Shi P. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 2006, 153(6): A1093–A1097
CrossRef Google scholar
[49]
Spernjak D, Fairweather J D, Rockward T, Mukundan R, Borup R. Characterization of carbon corrosion in a segmented PEM fuel cell. ECS Transactions, 2011, 41(1): 741–750
[50]
Zhang J, ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. London: Springer Science & Business Media, 2008
[51]
Shao Y, Yin G, Gao Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007, 171(2): 558–566
CrossRef Google scholar
[52]
Qi Z, Buelte S. Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells. Journal of Power Sources, 2006, 161(2): 1126–1132
CrossRef Google scholar
[53]
Zhai Y, Zhang H, Liu G, Hu J, Yi B. Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test. Journal of the Electrochemical Society, 2007, 154(1): B72–B76
CrossRef Google scholar
[54]
Patrick U, Rice C A. Ex-situ accelerated stress tests of Pt/C cathode catalysts. The importance of standard test procedures. In: 224th ECS Meeting Abstracts, 2013
[55]
Sheng W, Chen S, Vescovo E, Shao-Horn Y. Size influence on the oxygen reduction reaction activity and instability of supported Pt nanoparticles. Journal of the Electrochemical Society, 2011, 159(2): B96–B103
CrossRef Google scholar
[56]
Huang J, Li Z, Zhang J. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Frontiers in Energy, 2017, 11(3): 334–364
CrossRef Google scholar
[57]
Wang Y, Wang C Y, Chen K S. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 2007, 52(12): 3965–3975
CrossRef Google scholar
[58]
Millichamp J, Mason T J, Neville T P, Rajalakshmi N, Jervis R, Shearing P R, Brett D J L. Mechanisms and effects of mechanical compression and dimensional change in polymer electrolyte fuel cells–a review. Journal of Power Sources, 2015, 284: 305–320
CrossRef Google scholar
[59]
Meng H, Wang C Y. Electron transport in PEFCs. Journal of the Electrochemical Society, 2004, 151(3): A358–A367
CrossRef Google scholar
[60]
Zhang S, Yuan X, Wang H, Merida W, Zhu H, Shen J, Wu S, Zhang J. A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy, 2009, 34(1): 388–404
CrossRef Google scholar
[61]
Lee C, Mérida W. Gas diffusion layer durability under steady-state and freezing conditions. Journal of Power Sources, 2007, 164(1): 141–153
CrossRef Google scholar
[62]
Wang Y, Gundevia M. Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers. International Journal of Heat and Mass Transfer, 2013, 60: 134–142
CrossRef Google scholar
[63]
Wu J, Yuan X Z, Martin J J, Wang H, Zhang J, Shen J, Wu S, Merida W. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008, 184(1): 104–119
CrossRef Google scholar
[64]
Chen G, Zhang H, Ma H, Zhong H. Electrochemical durability of gas diffusion layer under simulated proton exchange membrane fuel cell conditions. International Journal of Hydrogen Energy, 2009, 34(19): 8185–8192
CrossRef Google scholar
[65]
Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
CrossRef Google scholar
[66]
Seidenberger K, Wilhelm F, Schmitt T, Lehnert W, Scholta J. Estimation of water distribution and degradation mechanisms in polymer electrolyte membrane fuel cell gas diffusion layers using a 3D Monte Carlo model. Journal of Power Sources, 2011, 196(12): 5317–5324
CrossRef Google scholar
[67]
Bazylak A, Sinton D, Liu Z S, Djilali N. Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. Journal of Power Sources, 2007, 163(2): 784–792
CrossRef Google scholar
[68]
Gurau V, Bluemle M J, De Castro E S, Tsou Y M, Zawodzinski T A Jr, Mann J A Jr. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. absolute permeability. Journal of Power Sources, 2007, 165(2): 793–802
CrossRef Google scholar
[69]
Gurau V, Mann J A. Effect of Interfacial phenomena at the gas diffusion layer-channel interface on the water evolution in a PEMFC. Journal of the Electrochemical Society, 2010, 157(4): B512–B521
CrossRef Google scholar
[70]
Gurau V, Zawodzinski T A, Mann J A. Two-phase transport in PEM fuel cell cathodes. Journal of Fuel Cell Science and Technology, 2008, 5(2): 021009
CrossRef Google scholar
[71]
Hartnig C, Manke I, Kuhn R, Kardjilov N, Banhart J, Lehnert W. Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells. Applied Physics Letters, 2008, 92(13): 134106
CrossRef Google scholar
[72]
Pasaogullari U, Wang C Y. Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2005, 152(2): A380–A390
CrossRef Google scholar
[73]
Meng H, Wang C Y. Model of two-phase flow and flooding dynamics in polymerelectrolyte fuel cells. Journal of the Electrochemical Society, 2005, 152(9): A1733–A1741
CrossRef Google scholar
[74]
Pasaogullari U, Wang C Y. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2004, 151(3): A399–A406
CrossRef Google scholar
[75]
Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(5): 1808–1825
CrossRef Google scholar
[76]
Mayrhofer K J, Blizanac B B, Arenz M, Stamenkovic V R, Ross P N, Markovic N M. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. Journal of Physical Chemistry B, 2005, 109(30): 14433–14440
CrossRef Google scholar
[77]
De Zoubov N, Vanleugenhaghe C, Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solution. New York: Pergamon Press, 1966
[78]
Kwon K, Jung Y, Ku H, Lee K, Kim S, Sohn J, Pak C. CO-tolerant Pt–BeO as a novel anode electrocatalyst in proton exchange membrane fuel cells. Catalysts, 2016, 6(5): 68
CrossRef Google scholar
[79]
Skoulidas A I, Ackerman D M, Johnson J K, Sholl D S. Rapid transport of gases in carbon nanotubes. Physical Review Letters, 2002, 89(18): 185901
CrossRef Google scholar
[80]
Antolini E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009, 88(1–2): 1–24
CrossRef Google scholar
[81]
Meier J C, Galeano C, Katsounaros I, Witte J, Bongard H J, Topalov A A, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer K J J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein Journal of Nanotechnology, 2014, 5(1): 44–67
CrossRef Google scholar
[82]
Yu P T, Gu W, Makharia R, Wagnerc F T, Gasteigerc H A. The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Transactions, 2006, 3(1): 797–809
[83]
Kou R, Shao Y, Wang D, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C, Lin Y, Wang Y, Aksay I A, Liu J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 2009, 11(5): 954–957
CrossRef Google scholar
[84]
Shao Y, Liu J, Wang Y, Lin Y. Novel catalyst support materials for PEM fuel cells: current status and future prospects. Journal of Materials Chemistry, 2009, 19(1): 46–59
CrossRef Google scholar
[85]
Antolini E, Gonzalez E R. Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics, 2009, 180(9–10): 746–763
CrossRef Google scholar
[86]
Antolini E, Gonzalez E R. Tungsten-based materials for fuel cell applications. Applied Catalysis B: Environmental, 2010, 96(3–4): 245–266
CrossRef Google scholar
[87]
d’Arbigny J B, Taillades G, Marrony M, Jones D J, Rozière J. Hollow microspheres with a tungsten carbide kernel for PEMFC application. Chemical Communications, 2011, 47(28): 7950–7952
CrossRef Google scholar
[88]
Yin S, Mu S, Lv H, Cheng N, Pan M, Fu Z. A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Applied Catalysis B: Environmental, 2010, 93(3–4): 233–240
CrossRef Google scholar
[89]
Kimmel Y C, Yang L, Kelly T G, Rykov S A, Chen J G. Theoretical prediction and experimental verification of low loading of platinum on titanium carbide as low-cost and stable electrocatalysts. Journal of Catalysis, 2014, 312: 216–220
CrossRef Google scholar
[90]
You D J, Jin X, Kim J H, Jin S A, Lee S, Choi K H, Baek W J, Pak C, Kim J M. Development of stable electrochemical catalysts using ordered mesoporous carbon/silicon carbide nanocomposites. International Journal of Hydrogen Energy, 2015, 40(36): 12352–12361
CrossRef Google scholar
[91]
Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo M A. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198: 516–524
CrossRef Google scholar
[92]
Halalay I C, Merzougui B, Carpenter M K, Swathirajan S, Gregory C. Garabedian G C, Mance A M, Cai M. Supports for fuel cell catalyst. US Patent, 7622216B2, 2009
[93]
Oyama S T. Introduction to the chemistry of transition metal carbides and nitrides. In: Oyama S T, ed. The Chemistry of Transition Metal Carbides and Nitrides. Dordrecht: Springer, 1996, 1–27
[94]
Sundar Pethaiah S, Paruthimal Kalaignan G, Ulaganathan M, Arunkumar J. Preparation of durable nanocatalyzed MEA for PEM fuel cell applications. Ionics, 2011, 17(4): 361–366
[95]
Sundar Pethaiah S, Paruthimal Kalaignan G, Sasikumar G, Ulaganathan M. Evaluation of platinum catalyzed MEAs for PEM fuel cell applications. Solid State Ionics. 2011, 190(1): 88–92
[96]
Sundar Pethaiah S, Paruthimal Kalaignan G, Sasikumar G, Ulaganathan M, Swaminathan V. Development of nano-catalyzed membrane for PEM fuel cell applications. Journal of Solid State Electrochemistry, 2013, 17(11): 2917–2925
CrossRef Google scholar
[97]
Lobato J, Zamora H, Plaza J, Rodrigo M A. Composite titanium silicon carbide as a promising catalyst support for high-temperature proton-exchange membrane fuel cell electrodes. ChemCatChem, 2016, 8(4): 848–854
CrossRef Google scholar
[98]
Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. Aging mechanisms and lifetime of PEFC and DMFC. Journal of Power Sources, 2004, 127(1–2): 127–134
CrossRef Google scholar
[99]
Long N V, Yang Y, Thi C M, Minh N V, Cao Y Q, Nogami M. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy, 2013, 2(5): 636–676
CrossRef Google scholar
[100]
Jayakumar A, Ramos M, Al-Jumaily A M. A novel 3D printing technique to synthesise gas diffusion layer for PEM fuel cell application. In: ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, USA, 2016
[101]
Jayakumar A, Singamneni S, Ramos M, Al-Jumaily A, Pethaiah S. Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered. Materials (Basel), 2017, 10(7): 796
CrossRef Google scholar
[102]
Wang C, Wang S, Peng L, Zhang J, Shao Z, Huang J, Sun C, Ouyang M, He X. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies, 2016, 9(8): 603
CrossRef Google scholar
[103]
Wood D L III, Borup R L. Durability aspects of gas-diffusion and microporous layers. In: Büchi F N, Inaba M, Schmid T J, eds. Polymer Electrolyte Fuel Cell Durability. New York: Springer, 2009, 159–195
[104]
Ahadi M, Tam M, Saha M S, Stumper J, Bahrami M. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: part 1–experimental study. Journal of Power Sources, 2017, 354: 207–214
CrossRef Google scholar
[105]
Gurau V, Liu H, Kakac S. Two-dimensional model for proton exchange membrane fuel cells. AIChE Journal., 1998, 44(11): 2410–2422
CrossRef Google scholar
[106]
Djilali N, Lu D. Influence of heat transfer on gas and water transport in fuel cells. International Journal of Thermal Sciences, 2002, 41(1): 29–40
CrossRef Google scholar
[107]
Rowe A, Li X. Mathematical modeling of proton exchange membrane fuel cells. Journal of Power Sources, 2001, 102(1–2): 82–96
CrossRef Google scholar
[108]
Nguyen P T, Berning T, Djilali N. Computational model of a PEM fuel cell with serpentine gas flow channels. Journal of Power Sources, 2004, 130(1–2): 149–157
CrossRef Google scholar
[109]
Ju H, Meng H, Wang C Y. A single-phase, non-isothermal model for PEM fuel cells. International Journal of Heat and Mass Transfer, 2005, 48(7): 1303–1315
CrossRef Google scholar
[110]
Khandelwal M, Mench M M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 2006, 161(2): 1106–1115
CrossRef Google scholar
[111]
Vie P J, Kjelstrup S. Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochimica Acta, 2004, 49(7): 1069–1077
CrossRef Google scholar
[112]
Ramousse J, Didierjean S, Lottin O, Maillet D. Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion Layers. International Journal of Thermal Sciences, 2008, 47(1): 1–6
CrossRef Google scholar
[113]
Lee Y, Kim B, Kim Y, Li X. Effects of a microporous layer on the performance degradation of proton exchange membrane fuel cells through repetitive freezing. Journal of Power Sources, 2011, 196(4): 1940–1947
CrossRef Google scholar
[114]
Hottinen T, Mikkola M, Mennola T, Lund P. Titanium sinter as gas diffusion backing in PEMFC. Journal of Power Sources, 2003, 118(1–2): 183–188
CrossRef Google scholar
[115]
Zhang F Y, Advani S G, Prasad A K. Performance of a metallic gas diffusion layer for PEM fuel cells. Journal of Power Sources, 2008, 176(1): 293–298
CrossRef Google scholar
[116]
Trefilov A M, Tiliakos A, Serban E C, Ceaus C, Iordache S M, Voinea S, Balan A. Carbon xerogel as gas diffusion layer in PEM fuel cells. International Journal of Hydrogen Energy, 2017, 42(15): 10448–10454
CrossRef Google scholar
[117]
Morgan J M, Datta R. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance. Journal of Power Sources, 2014, 251: 269–278
CrossRef Google scholar
[118]
Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo M A. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198: 516–524
CrossRef Google scholar
[119]
Ito H, Heo Y, Ishida M, Nakano A, Someya S, Munakata T. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells. Journal of Power Sources, 2017, 342: 393–404
CrossRef Google scholar
[120]
Schonvogel D, Rastedt M, Wagner P, Wark M, Dyck A. Impact of accelerated stress tests on high temperature PEMFC degradation. Fuel Cells (Weinheim), 2016, 16(4): 480–489
CrossRef Google scholar
[121]
Wang Y, Chen K S. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number. Journal of Power Sources, 2016, 315: 224–235
CrossRef Google scholar
[122]
Janssen G J. A phenomenological model of water transport in a proton exchange membrane fuel cell. Journal of the Electrochemical Society, 2001, 148(12): A1313–A1323
CrossRef Google scholar
[123]
Jayakumar A, Ramos M, Al-Jumaily A. A novel fuzzy schema to control the temperature and humidification of PEM fuel cell system. In: ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum, San Diego, California, USA, 2015
[124]
Saidur R, Kazi S N, Hossain M S, Rahman M M, Mohammed H A. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable & Sustainable Energy Reviews, 2011, 15(1): 310–323
CrossRef Google scholar
[125]
Kocjan A, Logar M, Shen Z. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Scientific Reports, 2017, 7(1): 2541
CrossRef Google scholar
[126]
Seo J K, Khetan A, Seo M H, Kim H, Han B. First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. Journal of Power Sources, 2013, 238: 137–143
CrossRef Google scholar
[127]
Wang G X, Yang L, Wang J Z, Liu H K, Dou S X. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. Journal of Nanoscience and Nanotechnology, 2005, 5(7): 1135–1140
CrossRef Google scholar
[128]
Martin S, Martinez-Vazquez B, Garcia-Ybarra P L, Castillo J L. Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method. Journal of Power Sources, 2013, 229: 179–184
CrossRef Google scholar
[129]
Martinez-Vazquez B, Sanchez D G, Castillo J L, Friedrich K A, Garcia-Ybarra P L. Scaling-up and characterization of ultralow-loading MEAs made-up by electrospray. International Journal of Hydrogen Energy, 2015, 40(15): 5384–5389
CrossRef Google scholar
[130]
Steele B C H, Heinzel A. Materials for fuel-cell technologies. In: Dusastre V ed. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review. Nature Publishing Group, 2011, 224–231
[131]
Singh R, Sui P C, Wong K H, Kjeang E, Knights S, Djilali N. Modeling the effect of chemical membrane degradation on PEMFC performance. Journal of the Electrochemical Society, 2018, 165(6): F3328–F3336
CrossRef Google scholar
[132]
Zhang J, Litteer B A, Coms F D, Makharia R. Recoverable performance loss due to membrane chemical degradation in PEM fuel cells. Journal of the Electrochemical Society, 2012, 159(7): F287–F293
CrossRef Google scholar
[133]
Asset T, Chattot R, Maillard F, Dubau L, Ahmad Y, Batisse N, Dubois M, Guérin K, Labbé F, Metkemeijer R, Berthon-Fabry S, Chatenet M. Activity and durability of platinum-based electrocatalysts supported on bare or fluorinated nanostructured carbon substrates. Journal of the Electrochemical Society, 2018, 165(6): F3346–F3358
CrossRef Google scholar

Acknowledgments

The authors would like to acknowledge the management of Chennai Institute of Technology for extending their support and Jo Stone for an effective proofreading.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(767 KB)

Accesses

Citations

Detail

Sections
Recommended

/