Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world

Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO

PDF(630 KB)
PDF(630 KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (3) : 466-480. DOI: 10.1007/s11708-018-0561-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world

Author information +
History +

Abstract

Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electrolysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/km. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance.

Keywords

hydrogen / fuel cell vehicle / life cycle assessment / energy consumption / greenhouse gas (GHG) emissions / China

Cite this article

Download citation ▾
Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO. Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world. Front. Energy, 2018, 12(3): 466‒480 https://doi.org/10.1007/s11708-018-0561-3

References

[1]
Hardman S, Chandan A, Shiu E, Steinberger-Wilckens R. Consumer attitudes to fuel cell vehicles post trial in the United Kingdom. International Journal of Hydrogen Energy, 2016, 41(15): 6171–6179
CrossRef Google scholar
[2]
Campanari S, Manzolini G, Garcia de la Iglesia F. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 2009, 186(2): 464–477
CrossRef Google scholar
[3]
Schafer A, Heywood J B, Weiss M A. Future fuel cell and internal combustion engine automobile technologies: a 25-year life cycle and fleet impact assessment. Energy, 2006, 31(12): 2064–2087
CrossRef Google scholar
[4]
Ekdunge P, Raberg M. The fuel cell vehicle analysis of energy use, emissions and cost. International Journal of Hydrogen Energy, 1998, 23(5): 381–385
CrossRef Google scholar
[5]
Wang M. Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts. Journal of Power Sources, 2002, 112(1): 307–321
CrossRef Google scholar
[6]
Paster M D, Ahluwalia R K, Berry G, Hydrogen storage technology options for fuel cell vehicles: well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Fuel and Energy Abstracts, 2011, 36(22): 14534–14551
[7]
Felgenhauer M F, Pellow M A, Benson S M, Hamacher T. Economic and environmental prospects of battery and fuel cell vehicles for the energy transition in German communities. Energy Procedia, 2016, 99: 380–391
CrossRef Google scholar
[8]
Felgenhauer M F, Pellow M A, Benson S M, Hamacher T. Evaluating co-benefits of battery and fuel cell vehicles in a community in California. Energy, 2016, 114: 360–368
CrossRef Google scholar
[9]
Offer G J, Howey D, Contestabile M, Clague R, Brandon N P. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 2010, 38(1): 24–29
CrossRef Google scholar
[10]
Wagner U, Eckl R, Tzscheutschler P. Energetic life cycle assessment of fuel cell powertrain systems and alternative fuels in Germany. Energy, 2006, 31(14): 3062–3075
CrossRef Google scholar
[11]
Ahmadi P, Kjeang E. Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces. International Journal of Hydrogen Energy, 2015, 40(38): 12905–12917
CrossRef Google scholar
[12]
Winter U, Weidner H. Hydrogen for the mobility of the future results of GM/Opel’s well-to-wheel studies in North America and Europe. Fuel Cells, 2003, 3(3): 76–83
CrossRef Google scholar
[13]
Han W, Zhang G, Xiao J, Bénard P, Chahine R. Demonstrations and marketing strategies of hydrogen fuel cell vehicles in China. International Journal of Hydrogen Energy, 2014, 39(25): 13859–13872
CrossRef Google scholar
[14]
Zhang L, Yu J, Ren J, Ma L, Zhang W, Liang H. How can fuel cell vehicles bring a bright future for this dragon? Answer by multi-criteria decision making analysis. International Journal of Hydrogen Energy, 2016, 41(39): 17183–17192
CrossRef Google scholar
[15]
Xu X, Xu B, Dong J, Liu X. Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China. Applied Energy, 2017, 196: 229–237
CrossRef Google scholar
[16]
Wang D, Zamel N, Jiao K, Zhou Y, Yu S, Du Q, Yin Y. Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China. Energy, 2013, 59: 402–412
CrossRef Google scholar
[17]
SAE-China.Technology Roadmap for Energy Saving and New Energy Vehicles. Beijing: China Machine Press, 2016 (in Chinese)
[18]
Yi B. Large scale demonstration and hydrogen source of fuel cell vehicle. In: 2nd Fuel Cell Vehicle Congress, Rugao, China, 2017 (in Chinese)
[19]
Ou X, Yan X, Zhang X. Using coal for transportation in China: life cycle GHG of coal-based fuel and electric vehicle, and policy implications. International Journal of Greenhouse Gas Control, 2010, 4(5): 878–887
CrossRef Google scholar
[20]
Chen Y. Life cycle ecological benefit evaluation of automobile parts. Dissertation for the Doctoral Degree. Changsha: Hunan University, 2014 (in Chinese)
[21]
Li Y. Research on evaluating the several methods of hydrogen production technology by life cycle assessment. Dissertation for the Master’s Degree. Xi’an: Xi’an University of Architecture and Technology, 2010 (in Chinese)
[22]
Pan H, Wang Q. Economic and technical comparison of three typical coal gasification technologies for hydrogen preparation. Shanxi Science and Technology, 2016, 31(3): 42–47 (in Chinese)
[23]
Liu G. Cost analysis of hydrogen production by NG reformation. Engineering Technology, 2016, 11: 00287–00289 (in Chinese)
[24]
GB 21257–2014. The Norm of Energy Consumption Per Unit Product of Caustic Soda. Beijing: Standards Press of China, 2014 (in Chinese)
[25]
Sun Y. Assessment and countermeasure study of coal-based methanol cleaner production based on life cycle assessment (LCA): a case study of a classical coal-based methanol process. Dissertation for the Master’s Degree. Shanghai: Fudan University, 2013 (in Chinese)
[26]
Tang L, Qiu L, Yao L, Review on research and developments of hydrogen liquefaction systems. Journal of Refrigeration, 2011, 32(6): 1–8 (in Chinese)
[27]
Chen C. Development of 300 m3 liquid hydrogen storage tank for transportation in vehicle. Dissertation for the Master’s Degree. Harbin: Harbin Institute of Technology, 2015 (in Chinese)
[33]
GB 24163-2009. Periodic Inspection and Evaluation of Steel Cylinder for the Storage of Compressed Natural Gas for Stations. Beijing: Standards Press of China, 2009 (in Chinese)
[28]
Liu J, Bai G, Ji M. Method for advancement evaluation of natural gas liquefaction process. Chemical Engineering (Albany, N.Y.), 2016, 44(11): 69–73 (in Chinese)
[29]
Kong W, Li Q, Wang X. Analysis on energy saving and emission reduction of electric vehicles based upon life-cycle energy efficiency. Electric Power, 2012, 45(9): 64–67 (in Chinese)
[30]
National Bureau of Statistics of China. 2016 China Energy Statistical Yearbook. Beijing: China Statistics Press, 2016 (in Chinese)
[31]
Ou X, Zhang X, Chang S. Alternative fuel buses currently in use in China: life-cycle fossil energy use, GHG emissions and policy recommendations. Energy Policy, 2010, 38(1): 406–418
CrossRef Google scholar
[32]
Dong J, Liu X, Xu X, Zhang S. Comparative life cycle assessment of hydrogen pathways from fossil sources in China. International Journal of Energy Research, 2016, 40(15): 2105–2116
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 71403142, 71774100, and 71690241) and Young Elite Scientists Sponsorship Program by CAST (YESS20160140).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(630 KB)

Accesses

Citations

Detail

Sections
Recommended

/