Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review

Abdalla M. ABDALLA , Shahzad HOSSAIN , Pg MohdIskandr PETRA , Mostafa GHASEMI , Abul K. AZAD

Front. Energy ›› 2020, Vol. 14 ›› Issue (2) : 359 -382.

PDF (5349KB)
Front. Energy ›› 2020, Vol. 14 ›› Issue (2) : 359 -382. DOI: 10.1007/s11708-018-0546-2
REVIEW ARTICLE
REVIEW ARTICLE

Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review

Author information +
History +
PDF (5349KB)

Abstract

The main concerns in the world today, especially in the energy field, are subjected to clean, efficient, and durable sources of energy. These three aspects are the main goals that scientist are paying attention to. However, the various types of energy resources include fossil and sustainable ones, but still some challenges are chasing these kinds from energy conversion, storage, and efficiency. Hence, the most reliable and considered energy resource nowadays is the utilized one which is as highly efficient, clean, and everlasting as possible. So, in this review, an attempt is made to highlight one of the promising types as a clean and efficient energy resource. Solid oxide fuel cell (SOFC) is the most efficient type of the fuel cell types involved with hydrogen and hydrocarbon-based fuels, especially when it works with combined heat and power (CHP). The importance of this type is due to its nature of work as conversion tool from chemical to electrical for generation of power without noise, pollution, and can be safely handled.

Keywords

solid oxide fuel cells (SOFCs) / clean energy / design / micro-scale / nano-scale / performance

Cite this article

Download citation ▾
Abdalla M. ABDALLA, Shahzad HOSSAIN, Pg MohdIskandr PETRA, Mostafa GHASEMI, Abul K. AZAD. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Front. Energy, 2020, 14(2): 359-382 DOI:10.1007/s11708-018-0546-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pfenninger S, Keirstead J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Applied Energy, 2015, 152:83–93

[2]

Johnson Matthey P L C. Fuel cell today. 2016–12–10, available at the website of fuelcelltoday.com/history

[3]

Jeong J, Azad A K, Schlegl H, Kim B, Baek S, Kim K, Kang H, Hyun J. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5Od (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell. Journal of Solid State Chemistry, 2015, 226:154–163

[4]

Chen F F. The Future of Energy I: Fossil Fuels. New York: Springer, 2011: 43–73

[5]

Menzler N H, Tietz F, Uhlenbruck S, Buchkremer H P, Stöver D. Materials and manufacturing technologies for solid oxide fuel cells. Journal of Materials Science, 2010, 45(12): 3109–3135

[6]

Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000

[7]

Johnson Matthey P L C. Fuel cell today: the fuel cell industry review 2013. 2017–1–20,

[8]

Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells. Journal of Materials Science, 2004, 39(14): 4405–4439

[9]

Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H. J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chemistry, 2011, 3(8): 647

[10]

Azad A K, Kim J H, Irvine J T S. Structural, electrochemical and magnetic characterization of the layered-type PrBa0.5Sr0.5Co2O5+δ perovskite. Journal of Solid State Chemistry, 2014, 213: 268–274

[11]

Azad A, Irvine J. High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3−d. Solid State Ionics, 2008, 179(19–20): 678–682

[12]

Rossmeisl J, Bessler W G. Trends in catalytic activity for SOFC anode materials. Solid State Ionics, 2008, 178(31–32): 1694–1700

[13]

Satyapal S. Expanding the use of biogas with fuel cell technologies. National Renewable Energy Laboratory, 2013, 7: 1–42

[14]

Tarancón A, Burriel M, Santiso J, Skinner S J, Kilner J A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20(19): 3799–3813

[15]

Lu L, Ni C, Cassidy M, John T S I. Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3. Journal of Materials Chemistry A, 2016, 4(30): 11708–11718

[16]

Chen F F. The Future of Energy I: Chapter 2. Fossil Fuels. New York: Springer, 2011: 53–63

[17]

Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Advanced Energy Materials, 2015, 5(18): 15005–15037

[18]

Gao Z, Mogni L, Miller E C, Railsback J, Barnet S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644

[19]

Möbius H H. High Temperature and Solid Oxide Fuel Cells: Chapter 2- History. Oxford: Elsevier, 2003: 23–51

[20]

Cook B. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216

[21]

Andjar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322

[22]

Smithsonian Institution. Fuel cell origins: 1840–1890. 2015–12–10,

[23]

National Aeronautics and Space Administration. Solid oxid fuel cells and electrolysis membranes. 2010–2–2,

[24]

Gross J H. Fuel cell technology. Joint Legislative air and water pollution committee, 2002, 2(1): 1–7

[25]

US. Department of Energy. Fuel Cell Handbook. University Press of the Pacific, 2005

[26]

Tesfai A, John T S I. Solid oxides fuel cells: theory and material. Comprehensive Renewable Energy, 2012, 38(48): 261–276

[27]

Frade J R. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction. Solid State Ionics, 1995, 78(1–2): 87–97

[28]

Tietz F, Buchkremer H P, Stöver D. 10 years of materials research for solid oxide fuel cells. Journal of Electroceramics, 2006, 17(2–4): 701–707

[29]

Huang X, Ni C, Zhao G, John T S I. Oxygen storage capacity and thermal stability of the CuMnO2–CeO2 composite system. Journal of Materials Chemistry A, 2015, 3(24): 12958–12964

[30]

ChemViews. Fuel cell capacity and cost trends. 2017–1–5,

[31]

Föger K. Materials basics for fuel cells. Materials for Fuel Cells, 2008, 14(4): 6–63

[32]

Patent Elseveir. Materials, processes for producing fuel cells and active membranes. Fuel Cells Bulletin, 2001, 4(34):14

[33]

Patent Elseveir. Electrocatalyst particles for fuel cells. Focus on Catalysts, 2009, 2009(2): 8

[34]

Rikkinen E, Santasalo-Aarnio A, Airaksinen S, Borghei M, Viitanen V, Sainio J, Kauppinen E I, Kallio T, Outi A, Krause I. Atomic layer deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation. Journal of Physical Chemistry C, 2011, 115(46): 23067

[35]

Smotkin E S, Ley K L, Pu C, Liu R. Catalysts for direct oxidation fuel cells. USA Patent, WO98/40161, 1998–09–17

[36]

Metodiev T V. Gold catalyst for fuel cells. Fuel Cells Bulletin, 1999, 29): 16

[37]

Elseveir News. Materials for fuel cells examined. Membrane Technology, 2008, 2008(10): 8

[38]

Sundmacher K, Hanke-Rauschenbach R, Heidebrecht P, Rihko-Struckmann L,Vidaković-Koch T. Some reaction engineering challenges in fuel cells: dynamics integration, renewable fuels, enzymes. Current Opinion in Chemical Engineering, 2012, 13): 328–335

[39]

Hemmes K, Kamp L M, Vernay A B H, de Werk G. A multi-source multi-product internal reforming fuel cell energy system as a stepping stone in the transition towards a more sustainable energy and transport sector. International Journal of Hydrogen Energy, 2011, 36(16): 10221–10227

[40]

Bengt S, Juan F. Heat Transfer in Aerospace Applications Chapter 8–Fuel Cells. London: Elsevier, 2017: 145–153

[41]

Irshad M, Siraj K, Raza R, Ali A, Tiwari P, Zhu B, Rafique A, Kaleem U, Usman A. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences, 2016, 6(3): 75

[42]

Singhal S C. Solid oxide fuel cells: an overview. Preprint Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(2): 478

[43]

Dollard W J. Solid oxide fuel cell development at Westinghouse. Journal of Power Sources, 1992, 37(1–2): 133–139

[44]

Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Review on solid oxide fuel cell technology. Engineering Journal, 2009, 13(1): 0125– 8281

[45]

Tesfai A, Connor P, Nairn J, Irvine J T S. Thermal cycling evaluation of rolled tubular solid oxide fuel cells. Journal of Fuel Cell Science and Technology, 2011, 8(6): 061001

[46]

Ge X M, Chan S H, Liu Q L, Sun Q. Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Advanced Energy Materials, 2012, 2(10): 1156–1181

[47]

Bharadwaj S R, Varma S, Wani B N. Electroceramics for fuel cells, batteries and sensors. In: Functional Materials, 2012: 639–674

[48]

Michalovic M. Fuel cells oxidation reaction. ChemMatters, 2007: 16–19

[49]

Gasik M. Materials for Fuel Cells. Cambridge: Woodhead Publishing Limited, 2008

[50]

Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8

[51]

Tao S, Irvine J T S. Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials. Journal of Solid State Chemistry, 2002, 165(1): 12–18

[52]

Azad A K, Zaini J, Petra P I, Ming L C, Eriksson S G. Effect of Nd-doping on structural, thermal and electrochemical properties of LaFe0.5Cr0.5O3 perovskites. Ceramics International, 2016, 42(3): 4532–4538

[53]

Lee S, Bae J, Katikaneni S P. La0.8Sr0.2Cr0.95Ru0.05O3−x and Sm0.8Ba0.2Cr0.95Ru0.05O3−x as partial oxidation catalysts for diesel. International Journal of Hydrogen Energy, 2014, 39(10): 4938–4946

[54]

Menzler N H, Sebold D, Wessel E. Interaction of La0.58Sr0.40 Co0.20Fe0.80O3−δ cathode with volatile Cr in a stack test—scanning electron microscopy and transmission electron microscopy investigations. Journal of Power Sources, 2014, 254: 148–152

[55]

Sun X F, Wang S R, Wang Z R, Qian J Q, Wen T L, Huang F Q. Evaluation of Sr0.88Y0.08TiO3–CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel. Journal of Power Sources, 2009, 187(1): 85–89

[56]

Steiner H J, Middleton P H, Steele B C H. Ternary titanates as anode materials for solid oxide fuel cells. Journal of Alloys and Compounds, 1993, 190(2): 279–285

[57]

Pihlatie M H, Kaiser A, Mogensen M B. Electrical conductivity of Ni–YSZ composites: variants and redox cycling. Solid State Ionics, 2012, 222–223(222): 38–46

[58]

Safeen K, Micheli V, Bartali R, Gottardi G, Safeen A, Ullah H, Laidani N. Synthesis of conductive and transparent Nb-doped TiO2 films: role of the target material and sputtering gas composition. Materials Science in Semiconductor Processing, 2017, 66: 74–80

[59]

Han J, Sun Q, Song Y. Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics. Journal of Alloys and Compounds, 2017, 705: 22–27

[60]

Ideris A, Croiset E, Pritzker M. Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO. International Journal of Hydrogen Energy, 2016, 42(14): 9180–9187

[61]

Gondolini A, Mercadelli E, Sangiorgi A, Sanson A. Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application. Journal of the European Ceramic Society, 2017, 37(3): 1023–1030

[62]

Sarıboğa V, Faruk Oksüzomer M A. Cu-CeO2 anodes for solid oxide fuel cells: determination of infiltration characteristics. Journal of Alloys and Compounds, 2016, 688: 323–331

[63]

Light N, Kesler O. Air plasma sprayed Cu-Co-GDC anode coatings with various Co loadings. Journal of Power Sources, 2013, 233: 157–165

[64]

Droushiotis N, Grande F D, Dzarfan Othman M H, Kanawka K, Doraswami U, Metcalfe I S, Li K, Kelsall G. Comparison between anode-supported and electrolyte-supported Ni-CGO-LSCF micro-tubular solid oxide. Fuel Cells (Weinheim), 2014, 14(2): 200–211

[65]

Patil K C, Hegde M S, Rattan T, Aruna S T. Zirconia and related oxide materials. Chemistry of Nanocrystalline Oxide Materials, 2008: 212–225

[66]

Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764

[67]

Brochu M, Loehman R E. Hermetic sealing of solid oxide fuel cells. Microjoining and Nanojoining, 2000: 718–740

[68]

Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

[69]

Haile S M. Materials for fuel cells. Materials today, 2003, 6(3): 24–29

[70]

Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144

[71]

Kim Y N, Kim J H, Huq A, Paranthaman M P, Manthiram A. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells. Journal of Power Sources, 2012, 214(4): 7–14

[72]

Sammes N M, Roy B R. Reference module in chemistry, molecular sciences and chemical engineering. Encyclopedia of Electrochem Power Sources, 2009, 25–33

[73]

McCarthy B P, Pederson L R, Chou Y S, Zhou X D, Surdoval W A, Wilson L C. Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. Journal of Power Sources, 2008, 180(1): 294–300

[74]

Meixner D L, Cutler R A. Sintering and mechanical characteristics of lanthanum strontium manganite. Solid State Ionics, 2002, 146(3–4): 273–284

[75]

Khandale P, Lajurkar R P, Bhoga S S. Nd1.8Sr0.2NiO4−δ:Ce0.9Gd0.1O2−δ composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(33): 19039–19050

[76]

Jeong C, Lee J H, Park M, Hong J, Kim H, Son J W, Lee J H, Kim B K, Yoon K J. Design and processing parameters of La2NiO4+δ–based cathode for anode-supported planar solid oxide fuel cells (SOFCs). Journal of Power Sources, 2015, 297: 370–378

[77]

Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6−δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750

[78]

Jarot R, Muchtar A, Dawoud W R W, Muhamad N, Majlanlie E H. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications. Key Engineering Materials, 2011, 471–472: 179–184

[79]

Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+δ (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689

[80]

Wincewicz K C, Cooper J S. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 2005, 140(2): 280–296

[81]

Bastawors A. Crystal structure metals-ceramics: material science and engineering. 2001–1–31,

[82]

Bhushan B. Scanning Probe Microscopy in Nanoscience and Nanotechnology: Chapter 17. Berlin: Springer, 2009: 615

[83]

Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018

[84]

Luxová J, Šulcová P, Trojan M. Study of perovskite compounds. Thermal Analysis and Calorimetry, 2008, 93(3): 823–827

[85]

A S, R, R. The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 2000, 4(1): 3–26

[86]

Johnsson M, Lemmens P. Introduction to advanced ceramics. Cornel Digital Library, 2001: 1–11

[87]

Azad A K. Synthesis, structure and magnetic properties of double perovskite of the type A2MnBO6. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2004

[88]

Andreassson J. Inelastic light scattering study of strongly correlated oxides. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2005

[89]

Materials Research Science and Engineering Centers. 2016–6–20,

[90]

Kobayashi K I, Sawada H, Terakura K. Room-temperature magneto resistance in an oxide material with an ordered double-perovskite structure. Nature, 1998, 395(6703): 677–680

[91]

Dasgupta T S. Materials Modeling. 2015–9–15,

[92]

Witczakkrempa W, Gang C, Yong B K, Balents L. Correlated quantum phenomena in the strong spin-orbit regime. Annual Review of Condensed Matter Physics, 2013, 5(1): 57–82

[93]

GRACE Communications Foundation. Fossil fuel and energy use. 2009,

[94]

Cheddie D F. Integration of a solid oxide fuel cell into a 10 MW gas turbine power plant. Energies, 2010, 3(4): 754–769

[95]

Yokokawa H, Tu H H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412

[96]

Goodenough J B. Electrochemical energy storage in a sustainable modern society. Energy & Environmental Science, 2013, 7(1): 14–18

[97]

Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455

[98]

Orera V M, Laguna-Bercero M A, Larrea A. Fabrication methods and performance in fuel cell and steam electrolysis operation modes of small tubular solid oxide fuel cells: a review. Frontiers in Energy Research, 2014, 2: 1–13

[99]

Kreysa G, Ota K I, SavinellR F. Encyclopedia of Applied Electrochemistry. New York: Springer, 2014

[100]

Karton V V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley, 2011

[101]

Prinz F B, Hayre R O, Lee M. Micro and nano scale electrochemistry: application to fuel cells. GCEP Technical Report, 2004

[102]

CERAMIC INDUSTRY. CERAMIC ENERGY: Advances in SOFC materials and manufacturing. 2004–9–1,

[103]

Bieberle-Hütter A, Galinski H, Rupp J L M, Ryll T, Scherrer B, Tölke R, Gauckler L J. Micro-solid oxide fuel cells: status, challenges, and chances. Monatshefte für Chemie, 2009, 140(9): 975–983

[104]

Abdalla M A, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368

[105]

Cook B. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216

[106]

Mazumder S K, Acharya K, Haynes C L, Williams R, von Spakovsky M R, Nelson D J, Rancruel D F, Hartvigsen J, Gemmen R S. Solid-oxide-fuel-cell performance and durability: resolution of the effects of power- conditioning systems and application loads. IEEE Transactions on Power Electronics, 2004, 19(5): 1263–1278

[107]

Boder M, Dittmeyer R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. Journal of Power Sources, 2006, 155(1): 13–22

[108]

Weber A, Ivers-Tiffée E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004, 127(1–2): 273–283

[109]

Morse J D, Jankowski A F, Hayes J P, Graff R T. A novel thin film solid oxide fuel cell for microscale energy conversion. Micromachined Devices Components V, 1999, 3876: 223–226

[110]

Rey-mermet S, Muralt P. Microfabricated solid oxide fuel cells. Epfl, 2009, 56(2):498–500

[111]

Evans A, Bieberle-Hütter A, Rupp J L M, Gauckler L J. Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources, 2009, 194(1): 119–129

[112]

Bieberle-Hütter A, Beckel D, Infortuna A, Muecke U P, Rupp J L M, Gauckler L J , Rey-Mermet S, Muralt P, Bieri N R, Hotz N, Stutz M J, Poulikakos D, Heeb P, Müller P, Bernard A, Gmüre R, Hocker T. A micro-solid oxide fuel cell system as battery replacement. Journal of Power Sources, 2008, 177(1): 123–130

[113]

Sammes N, Galloway K, Yamaguchi T, Serincan M. Concept, manufacture and results of the microtubular solid oxide fuel cell. Transactions on Electrical and Electronic Materials, 2011, 12(1): 1–6

[114]

Zhu B. Advanced hybrid ion conducting ceramic composites and applications in new fuel cell generation. Key Engineering Materials, 2007, 280–283: 413–418

[115]

Muecke U P, Beckel D, Bernard A, Bieberle H A, Graf S, Infortuna A. Micro solid oxide fuel cells on glass ceramic substrates. Advanced Functional Materials, 2010, 18(20):3158–3168

[116]

Rey-Mermet S, Muralt P. Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ionics, 2008, 179(27–32): 1497–1500

[117]

Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz F B. High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal of the Electrochemical Society, 2007, 154(1): B20–B24

[118]

Shim J H, Chao C C, Huango H, Prinz F B. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Material2007, 19(15): 3850–3854

[119]

Kwon C W, Lee J, Kim K B, Lee H W, Lee J H, Son J W. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes. Journal of Power Sources, 2012, 210(210): 178–183

[120]

Su P C, Chao C C, Shim J H, Fasching R, Prinz F B. Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 2008, 8(8): 2289

[121]

Joo J H, Choi G M. Simple fabrication of micro-solid oxide fuel cell supported on metal substrate. Journal of Power Sources, 2008, 182(2): 589–593

[122]

Kang S, Su P C, Park Y I, Saito Y, Prinz F B. Thin film solid oxide fuel cells on porous nickel substrates with multistage nanohole array. Journal of the Electrochemical Society, 2006, 153(3): A554–A559

[123]

Shao Z, Haile S M, Ahn J, Ronney P D, Zhan Z, Barnett S A. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435(7043): 795–798

[124]

Valadez T N, Norton J R, Neary M C. Reaction of Cp* (Cl)M(Diene) (M= Ti, Hf) with Isonitriles. Journal of the American Chemical Society, 2015, 137(32): 10152–10155

[125]

Sholklapper T Z, Kurokawa H, Jacobson C P,Visco S J, de Jonghe L C. Nanostructured solid oxide fuel cell electrodes. Nano Letters, 2006, 7(7): 2136–2141

[126]

Sata N, Eberman K, Eberl K, Maier J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000, 408(6815): 946–949

[127]

Chockalingam R, Basu S. Impedance spectroscopy studies of Gd-CeO2-(LiNa)CO3 nano composite electrolytes for low temperature SOFC applications. International Journal of Hydrogen Energy, 2011, 36(22): 14977–14983

[128]

Myung J H, Shin T H, Kim S D, Park H G, Moon J, Hyun S H. Optimization of Ni-zirconia based anode support for robust and high-performance 5×5 cm2 sized SOFC via tape-casting/co-firing technique and nano-structured anode. International Journal of Hydrogen Energy, 2015, 40(6): 2792–2799

[129]

Shah M, Voorhees P W, Barnett S A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ionics, 2011, 187(1): 64–67

[130]

Tsuchiya M, Lai B K, Ramanathan S. Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology, 2011, 6(5): 282

[131]

Zhang H, Zhao F, Chen F, Xia C. Nano-structured Sm0.5Sr0.5CoO3−δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192(1): 591–594

[132]

Kerman K, Lai B, Ramanathan S. Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Advanced Energy Materials, 2012, 2(6): 655–655

[133]

Wang X, Huang H, Holme T, Tian X, Prinz F B. Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. Journal of Power Sources, 2008, 175(1): 75–81

[134]

Gu Y C, Lee Y H, Cha S W. Multi-component nano-composite electrode for SOFCS via thin film technique. Renewable Energy, 2014, 65(5):130–136

[135]

Lin Y, Beale S B. Performance predictions in solid oxide fuel cells. Applied Mathematical Modelling, 2006, 30(11): 1485–1496

[136]

Endless Sphere Electric Vehicle and Technology Forum. EV business world. 2016–8–1,

[137]

Osaka Gas CO., LTD. Principle of SOFC power generation. 2017–2–10,

[138]

Hydrogen Fuel Cell Engines and Related Technologies Course. 2015–9–10,

[139]

Dawoud B, Amer E, Gross D. Experimental investigation of an adsorptive thermal energy storage. International Journal of Energy Research, 2010, 31(2): 135–147

[140]

Vibhu V, Rougier A, Nicollet C, Flura A, Fourcade S, Penin N, Grenier J C, Bassat J M. Pr4Ni3O10+δ: a new promising oxygen electrode material for solid oxide fuel cells. Journal of Power Sources, 2016, 317: 184–193

[141]

Shimada H, Yamaguchi T, Suzuki T, Sumi H, Hamamoto K, Fujishiro Y. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2016, 302: 308–314

[142]

Myung J H, Neagu D, Miller D N, Irvine J T. Switching on electrocatalytic activity in solid oxide cells. Nature, 2016, 537(7621): 528–531

[143]

Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, John T S I, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209

[144]

Wu L, Wang S, Wang S, Xia C. Enhancing the performance of doped ceria interlayer for tubular solidoxide fuel cells. Journal of Power Sources, 2013, 240(240): 241–244

[145]

Park Y M, Kim H. Composite cathodes based on Sm0.5Sr0.5CoO3Ld with porous Gd-doped ceria barrier layers for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(20):15320–15333

[146]

Wang F, Chen D, Shao Z. Sm0.5Sr0.5CoO3−δ infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216: 208–215

[147]

Qian J, Zhu Z, Dang J, Jiang G, Liu W. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria–zirconia bilayer electrolytes on modified anode substrate. Electrochimica Acta, 2013, 92(92): 243–247

[148]

Li C, Chen H, Shi H, Tade M O, Shao Z. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 2015, 273(273): 465–471

[149]

Gao Z, Miller E C, Barnett S A. A high power density intermediate-temperature solid oxide fuel cell with thin (La0.9Sr0.1)0.98 (Ga0.8Mg0.2)O3−δ electrolyte and nano-scale. Advanced Functional Materials, 2015, 24(36): 5703–5709

[150]

Zhang H, Zhao F, Chen F, Xia C. Nano-structured Sm0.5Sr0.5 CoO3−δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192(1): 591–594

[151]

Liu M, Dong D, Zhao F, Gao J, Ding D, Liu X, Meng G. High-performance cathode-supported SOFCs prepared by a single-step co-firing process. Journal of Power Sources, 2008, 182(2): 585–588

[152]

Chang J C, Lee M C, Yang R J, Chang Y C, Lin T N, Wang C H, Kao W X, Lee L S. Fabrication and characterization of Sm0.2Ce0.8O2−δ, Sm0.5Sr0.5CoO3−δ composite cathode for anode supported solid oxide fuel cell. Journal of Power Sources, 2011, 196(6): 3129–3133

[153]

Sarmah P, Gogoi T K, Das R. Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method. Applied Thermal Engineering, 2017, 119: 98–107

[154]

Gogoi T K, Pandey M, Das R. Estimation of operating parameters of a reheat regenerative power cycle using simplex search and differential evolution based inverse methods. Energy Conversion and Management, 2015, 91: 204–218

[155]

Gogoi T K, Das R. A combined cycle plant with air and fuel recuperator for captive power application. Part 2: Inverse analysis and parameter estimation. Energy Conversion and Management, 2014, 79(79): 778–789

[156]

Gogoi T K, Das R. Inverse analysis of an internal reforming solid oxide fuel cell system using simplex search method. Applied Mathematical Modelling, 2013, 37(10–11): 6994–7015

[157]

Cable T L, Sofie S W. A symmetrical, planar SOFC design for NASA’s high specific power density requirements. Journal of Power Sources, 2007, 174(1): 221–227

[158]

Park J S, An J, Lee M H, Prinz F B, Lee W. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells. Journal of Power Sources, 2015, 295: 74–78

[159]

Tsipis E V, Naumovich E N, Patrakeev M V, Yaremchenko A A, Marozau I P, Kovalevsky A V, Waerenborgh J C, Kharton V V. Oxygen deficiency, vacancy clustering and ionic transport in (La,Sr)CoO3−d. Solid State Ionics, 2011, 192(1): 42–48

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5349KB)

8921

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/