Leidenfrost drops on micro/nanostructured surfaces
Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU
Leidenfrost drops on micro/nanostructured surfaces
In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing deteriorated heat transfer in a myriad of important engineering applications. Thus, it is highly desirable to suppress the Leidenfrost effect and elevate the Leidenfrost temperature. This paper presents a comprehensive review of recent literature concerning the Leidenfrost drops on micro/nanostructured surfaces with an emphasis on the enhancement of the Leidenfrost temperature. The basic physical processes of the Leidenfrost effect and the key characteristics of the Leidenfrost drops were first introduced. Then, the major findings of the influence of various micro/nanoscale surface structures on the Leidenfrost temperature were presented in detail, and the underlying enhancement mechanism for each specific surface topology was also discussed. It was concluded that multiscale hierarchical surfaces hold the best promise to significantly boost the Leidenfrost temperature by combining the advantages of both micro- and nanoscale structures.
Leidenfrost drop / Leidenfrost temperature / heat transfer enhancement / micro/nanostructured surfaces
[1] |
Leidenfrost J G. On the fixation of water in diverse fire. International Journal of Heat and Mass Transfer, 1966, 9(11): 1153–1166
CrossRef
Google scholar
|
[2] |
Hall D D, Mudawar I, Morgan R E, Ehlers S L. Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings. Journal of Materials Engineering and Performance, 1997, 6(1): 77–92
CrossRef
Google scholar
|
[3] |
Rein M. Interactions between drops and hot surfaces. In: Rein M. Drop-Surface Interactions. Vienna: Springer, 2002, 456: 185–217
|
[4] |
Vorster W J J, Schwindt S A, Schupp J, Korsunsky A M. Analysis of the spray field development on a vertical surface during water spray-quenching using a flat spray nozzle. Applied Thermal Engineering, 2009, 29(7): 1406–1416
CrossRef
Google scholar
|
[5] |
Zhang Y, Jia M, Liu H, Xie M, Wang T. Investigation of the characteristics of fuel adhesion formed by spray/wall interaction under diesel premixed charge compression ignition (PCCI) relevant conditions. Atomization and Sprays, 2015, 25(11): 933–968
CrossRef
Google scholar
|
[6] |
Liang G T, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103–126
CrossRef
Google scholar
|
[7] |
Gottfried B S, Bell K J. Film boiling of spheroidal droplets. Leidenfrost phenomenon. Industrial & Engineering Chemistry Fundamentals, 1966, 5(4): 561–568
CrossRef
Google scholar
|
[8] |
Bernardin J D, Mudawar I. The Leidenfrost point: experimental study and assessment of existing models. Journal of Heat Transfer, 1999, 121(4): 894–903
CrossRef
Google scholar
|
[9] |
Emmerson G S. The effect of pressure and surface material on the Leidenfrost point of discrete drops of water. International Journal of Heat and Mass Transfer, 1975, 18(3): 381–386
CrossRef
Google scholar
|
[10] |
Kandlikar S G, Steinke M E. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. International Journal of Heat and Mass Transfer, 2002, 45(18): 3771–3780
CrossRef
Google scholar
|
[11] |
Takata Y, Hidaka S, Cao J M, Nakamura T, Yamamoto H, Masuda M, Ito T. Effect of surface wettability on boiling and evaporation. Energy, 2005, 30(2–4): 209–220
CrossRef
Google scholar
|
[12] |
Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012, 489(7415): 274–277
CrossRef
Pubmed
Google scholar
|
[13] |
Quéré D. Wetting and roughness. Annual Review of Materials Research, 2008, 38(1): 71–99
CrossRef
Google scholar
|
[14] |
Bradfield W S. Liquid-solid contact in stable film boiling. Industrial & Engineering Chemistry Fundamentals, 1966, 5(2): 200–204
CrossRef
Google scholar
|
[15] |
Kim H, Buongiorno J, Hu L W, McKrell T. Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids. International Journal of Heat and Mass Transfer, 2010, 53(7–8): 1542–1553
CrossRef
Google scholar
|
[16] |
Zhong L, Guo Z. Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale, 2017, 9(19): 6219–6236
CrossRef
Pubmed
Google scholar
|
[17] |
Ko Y S, Chung S H. An experiment on the breakup of impinging droplets on a hot surface. Experiments in Fluids, 1996, 21(2): 118–123
CrossRef
Google scholar
|
[18] |
Naber J D, Farrell P V. Hydrodynamics of droplet impingement on a heated surface. SAE Technical Paper, 1993, 930919
|
[19] |
Quéré D. Leidenfrost dynamics. Annual Review of Fluid Mechanics, 2013, 45(1): 197–215
CrossRef
Google scholar
|
[20] |
Mahadevan L, Pomeau Y. Rolling droplets. Physics of Fluids, 1999, 11(9): 2449–2453
CrossRef
Google scholar
|
[21] |
Johnson K L. Contact Mechanics. New York: Cambridge University Press, 1987
|
[22] |
Aussillous P, Quéré D. Properties of liquid marbles. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 973–999
CrossRef
Google scholar
|
[23] |
Gottfried B S, Lee C J, Bell K J. Leidenfrost phenomenon-film boiling of liquid droplets on a flat plate. International Journal of Heat and Mass Transfer, 1966, 9(11): 1167–1188
CrossRef
Google scholar
|
[24] |
Avedisian C T, Koplik J. Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces. International Journal of Heat and Mass Transfer, 1987, 30(2): 379–393
CrossRef
Google scholar
|
[25] |
Biance A L, Clanet C, Quéré D. Leidenfrost drops. Physics of Fluids, 2003, 15(6): 1632–1637
CrossRef
Google scholar
|
[26] |
Snoeijer J H, Brunet P, Eggers J. Maximum size of drops levitated by an air cushion. Physical Review. E, Statistical, Nonlinear, Biological and Soft Matter Physics 2009, 79(3): 036307
CrossRef
Pubmed
Google scholar
|
[27] |
Burton J C, Sharpe A L, van der Veen R C A, Franco A, Nagel S R. Geometry of the vapor layer under a Leidenfrost drop. Physical Review Letters, 2012, 109(7): 074301
CrossRef
Pubmed
Google scholar
|
[28] |
Snezhko A, Ben Jacob E, Aranson I S. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets. New Journal of Physics, 2008, 10(4): 043034
CrossRef
Google scholar
|
[29] |
Holter N J, Glasscock W R. Vibrations of evaporating liquid drops. Journal of the Acoustical Society of America, 1952, 24(6): 682–686
CrossRef
Google scholar
|
[30] |
Paul G, Manna I, Das P K. Formation, growth, and eruption cycle of vapor domes beneath a liquid puddle during Leidenfrost phenomena. Applied Physics Letters, 2013, 103(8): 084101
CrossRef
Google scholar
|
[31] |
Ma X, Liétor-Santos J J, Burton J C. Star-shaped oscillations of Leidenfrost drops. Physical Review Fluids, 2017, 2(3): 031602
CrossRef
Google scholar
|
[32] |
Tamura Z, Tanasawa Y. Evaporation and combustion of a drop contacting with a hot surface. Symposium (International) on Combustion, 1958, 7(1): 509–522
CrossRef
Google scholar
|
[33] |
Tran T, Staat H J J, Prosperetti A, Sun C, Lohse D. Drop impact on superheated surfaces. Physical Review Letters, 2012, 108(3): 036101
CrossRef
Pubmed
Google scholar
|
[34] |
Tran T, Staat H J J, Susarrey-Arce A, Foertsch T C, van Houselt A, Gardeniers H, Prosperetti A, Lohse D, Sun C. Droplet impact on superheated micro-structured surfaces. Soft Matter, 2013, 9(12): 3272–3282
CrossRef
Google scholar
|
[35] |
Rein M. Drop-surface Interactions. New York: Springer Wien, 2002
|
[36] |
Yagov V V, Lexin M A, Zabirov A R, Kaban’kov O N. Film boiling of subcooled liquids. Part I: Leidenfrost phenomenon and experimental results for subcooled water. International Journal of Heat and Mass Transfer, 2016, 100: 908–917
CrossRef
Google scholar
|
[37] |
Liang G, Mudawar I. Review of spray cooling–Part 2: high temperature boiling regimes and quenching applications. International Journal of Heat and Mass Transfer, 2017, 115: 1206–1222
CrossRef
Google scholar
|
[38] |
Baumeister K J, Simon F F. Leidenfrost temperature—its correlation for liquid metals, cryogens, hydrocarbons, and water. Journal of Heat Transfer, 1973, 95(2): 166–173
CrossRef
Google scholar
|
[39] |
Liang G, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103–126
CrossRef
Google scholar
|
[40] |
Berenson P J. Film-boiling heat transfer from a horizontal surface. Journal of Heat Transfer, 1961, 83(3): 351–356
CrossRef
Google scholar
|
[41] |
Zuber N. On the stability of boiling heat transfer. Transactions of the American Society of Mechanical Engineers, 1958, 80: 711–716
|
[42] |
Yao S C, Henry R E. An investigation of the minimum film boiling temperature on horizontal surfaces. Journal of Heat Transfer, 1978, 100(2): 260–267
CrossRef
Google scholar
|
[43] |
Spiegler P, Hopenfeld J, Silberberg M, Bumpus C F Jr, Norman A. Onset of stable film boiling and the foam limit. International Journal of Heat and Mass Transfer, 1963, 6(11): 987–989
CrossRef
Google scholar
|
[44] |
Schroeder-Richter D, Bartsch G. The Leidenfrost phenomenon caused by a thermo-mechanical effect of transition boiling: a revisited problem of non-equilibrium thermodynamics. Fundamentals of Phase Change: Boiling and Condensation, 1990, 13–20
|
[45] |
Olek S, Zvirin Y, Elias E. The relation between the rewetting temperature and the liquid-solid contact angle. International Journal of Heat and Mass Transfer, 1988, 31(4): 898–902
CrossRef
Google scholar
|
[46] |
Segev A, Bankoff S G. The role of adsorption in determining the minimum film boiling temperature. International Journal of Heat and Mass Transfer, 1980, 23(5): 637–642
CrossRef
Google scholar
|
[47] |
Bernardin J D, Mudawar I. A cavity activation and bubble growth model of the Leidenfrost point. Journal of Heat Transfer, 2002, 124(5): 864–874
CrossRef
Google scholar
|
[48] |
Ahn H S, Jo H J, Kang S H, Kim M H. Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Applied Physics Letters, 2011, 98(7): 071908
CrossRef
Google scholar
|
[49] |
Dong L, Quan X, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. International Journal of Heat and Mass Transfer, 2014, 71(4): 189–196
CrossRef
Google scholar
|
[50] |
Bernardin J D, Stebbins C J, Mudawar I. Effects of surface roughness on water droplet impact history and heat transfer regimes. International Journal of Heat and Mass Transfer, 1996, 40(1): 73– 88
CrossRef
Google scholar
|
[51] |
Bernardin J D, Mudawar I. A Leidenfrost point model for impinging droplets and sprays. Journal of Heat Transfer, 2004, 126(2): 272–278
CrossRef
Google scholar
|
[52] |
Elbahri M, Paretkar D, Hirmas K, Jebril S, Adelung R. Anti-lotus effect for nanostructuring at the Leidenfrost temperature. Advanced Materials, 2007, 19(9): 1262–1266
CrossRef
Google scholar
|
[53] |
Cui Q, Chandra S, McCahan S. The effect of dissolving salts in water sprays used for quenching a hot surface: Part 2—spray cooling. Journal of Heat Transfer, 2003, 125(2): 333–338
CrossRef
Google scholar
|
[54] |
Abdalrahman K H M, Sabariman
CrossRef
Google scholar
|
[55] |
Huang C K, Carey V P. The effects of dissolved salt on the Leidenfrost transition. International Journal of Heat and Mass Transfer, 2007, 50(1): 269–282
CrossRef
Google scholar
|
[56] |
Kim H, Truong B, Buongiorno J, Hu L W. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Applied Physics Letters, 2011, 98(8): 083121
CrossRef
Google scholar
|
[57] |
Kwon H M, Bird J C, Varanasi K K. Increasing Leidenfrost point using micro-nano hierarchical surface structures. Applied Physics Letters, 2013, 103(20): 201601
CrossRef
Google scholar
|
[58] |
Feng R, Wu X, Xue Q. Profile characterization and temperature dependence of droplet control on textured surfaces. Chinese Science Bulletin, 2011, 56(18): 1930–1934
CrossRef
Google scholar
|
[59] |
Arnaldo del Cerro D, Marín Á G, Römer G R B E, Pathiraj B, Lohse D, Huis in’t Veld A J. Leidenfrost point reduction on micropatterned metallic surfaces. Langmuir, 2012, 28(42): 15106–15110
CrossRef
Pubmed
Google scholar
|
[60] |
Park I W, Fernandino M, Dorao C A. Effect of micropillar characteristics on Leidenfrost temperature of impacting droplets. In: Proceedings of ASME 14th International Conference on Nanochannels, Microchannels and Minichannels, Washington, USA, 2016
|
[61] |
Hays R, Maynes D, Crockett J. Thermal transport to droplets on heated superhydrophobic substrates. International Journal of Heat and Mass Transfer, 2016, 98: 70–80
CrossRef
Google scholar
|
[62] |
Nair H, Staat H J J, Tran T, van Houselt A, Prosperetti A, Lohse D, Sun C. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter, 2014, 10(13): 2102–2109
CrossRef
Pubmed
Google scholar
|
[63] |
Weickgenannt C M, Zhang Y, Sinha-Ray S, Roisman I V, Gambaryan-Roisman T, Tropea C, Yarin A L. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Physical Review. E, Statistical, Nonlinear, Biological, and Soft Matter Physics, 2011, 84(3): 036310
CrossRef
Pubmed
Google scholar
|
[64] |
Weickgenannt C M, Zhang Y, Lembach A N, Roisman I V, Gambaryan-Roisman T, Yarin A L, Tropea C. Nonisothermal drop impact and evaporation on polymer nanofiber mats. Physical Review. E, Statistical, Nonlinear, Biological, and Soft Matter Physics , 2011, 83(3): 036305
CrossRef
Pubmed
Google scholar
|
[65] |
Sinha-Ray S, Zhang Y, Yarin A L. Thorny devil nanotextured fibers: the way to cooling rates on the order of 1 kW/cm2. Langmuir, 2011, 27(1): 215–226
CrossRef
Pubmed
Google scholar
|
[66] |
Kim S H, Ahn H S, Kim J, Kaviany M, Kim M H. Dynamics of water droplet on a heated nanotubes surface. Applied Physics Letters, 2013, 102(23): 233901
CrossRef
Google scholar
|
[67] |
Auliano M, Fernandino M, Zhang P, Dorao C A.
|
[68] |
Agapov R L, Boreyko J B, Briggs D P, Srijanto B R, Retterer S T, Collier C P, Lavrik N V. Asymmetric wettability of nanostructures directs Leidenfrost droplets. ACS Nano, 2014, 8(1): 860–867
CrossRef
Pubmed
Google scholar
|
[69] |
Kruse C, Anderson T, Wilson C, Zuhlke C, Alexander D, Gogos G, Ndao S. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir, 2013, 29(31): 9798–9806
CrossRef
Pubmed
Google scholar
|
[70] |
Lee G C, Kang J Y, Park H S, Moriyama K, Kim S H, Kim M H. Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temperature. Experimental Thermal and Fluid Science, 2017, 84: 156–164
CrossRef
Google scholar
|
[71] |
Farokhnia N, Sajadi S M, Irajizad P, Ghasemi H. Decoupled hierarchical structures for suppression of Leidenfrost phenomenon. Langmuir: the ACS Journal of Surfaces & Colloids, 2017, 33(10): 2541–2550
CrossRef
Pubmed
Google scholar
|
[72] |
Fatehi M, Kaviany M. Analysis of levitation of saturated liquid droplets on permeable surfaces. International Journal of Heat and Mass Transfer, 1990, 33(5): 983–994
CrossRef
Google scholar
|
[73] |
Chabičovský M, Hnízdil M, Tseng A A, Raudenský M. Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures. International Journal of Heat and Mass Transfer, 2015, 88: 236–246
CrossRef
Google scholar
|
[74] |
Yu Z, Wang F, Fan L S. Experimental and numerical studies of water droplet impact on a porous surface in the film-boiling regime. Industrial & Engineering Chemistry Research, 2008, 47(23): 9174–9182
CrossRef
Google scholar
|
[75] |
Hu H, Xu C, Zhao Y, Shaeffer R, Ziegler K J, Chung J N. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface. International Journal of Heat and Mass Transfer, 2015, 80(5): 636–643
CrossRef
Google scholar
|
[76] |
Geraldi N R, McHale G, Xu B, Wells G G, Dodd L E, Wood D, Newton M I. Leidenfrost transition temperature for stainless steel meshes. Materials Letters, 2016, 176: 205–208
CrossRef
Google scholar
|
[77] |
Sajadi S M, Irajizad P, Kashyap V, Farokhnia N, Ghasemi H. Surfaces for high heat dissipation with no Leidenfrost limit. Applied Physics Letters, 2017, 111(2): 021605
CrossRef
Google scholar
|
/
〈 | 〉 |