Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition

Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO

PDF(296 KB)
PDF(296 KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 127-136. DOI: 10.1007/s11708-018-0519-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition

Author information +
History +

Abstract

In recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics, in which high thermoelectric performance can be obtained by combining both the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Along this line, a high thermoelectric figure of merit (ZT) is also anticipated for other nanoporous thin films, whose bulk counterparts possess superior electrical properties but also high lattice thermal conductivities. Numerous thermoelectric studies have been carried out on Si-based nanoporous thin films, whereas cost-effective nitrides and oxides are not systematically studied for similar thermoelectric benefits. In this work, the cross-plane thermal conductivities of nanoporous In0.1Ga0.9N thin films with varied porous patterns were measured with the time-domain thermoreflectance technique. These alloys are suggested to have better electrical properties than conventional SixGe1−x alloys; however, a high ZT is hindered by their intrinsically high lattice thermal conductivity, which can be addressed by introducing nanopores to scatter phonons. In contrast to previous studies using dry-etched nanopores with amorphous pore edges, the measured nanoporous thin films of this work are directly grown on a patterned sapphire substrate to minimize the structural damage by dry etching. This removes the uncertainty in the phonon transport analysis due to amorphous pore edges. Based on the measurement results, remarkable phonon size effects can be found for a thin film with periodic 300-nm-diameter pores of different patterns. This indicates that a significant amount of heat inside these alloys is still carried by phonons with ~300 nm or longer mean free paths. Our studies provide important guidance for ZT enhancement in alloys of nitrides and similar oxides.

Keywords

nanoporous film / thermoelectrics / phonon / mean free path / diffusive scattering

Cite this article

Download citation ▾
Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO. Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition. Front. Energy, 2018, 12(1): 127‒136 https://doi.org/10.1007/s11708-018-0519-5

References

[1]
Johnson W, Piner E L. GaN HEMT Technology. Berlin: Springer Berlin Heidelberg, 2012
[2]
Wu Y R, Singh J. Transient study of self-heating effects in AlGaN/GaN HFETs: consequence of carrier velocities, temperature, and device performance. Journal of Applied Physics, 2007, 101(11): 113712
CrossRef Google scholar
[3]
Rosker M, Bozada C, Dietrich H, Hung A, Via D, Binari S, Vivierios E, Cohen E, Hodiak J. The DARPA wide band gap semiconductors for RF applications (WBGS-RF) program: Phase II results. In: CS MANTECH Conference. Tampa, Florida, USA, 2009
[4]
Lee H, Agonafer D D, Won Y, Houshmand F, Gorle C, Asheghi M, Goodson K. Thermal modeling of extreme heat flux microchannel coolers for GaN-on-SiC semiconductor devices. Journal of Electronic Packaging, 2016, 138(1): 010907
CrossRef Google scholar
[5]
Calame J P, Myers R E, Binari S C, Wood F N, Garven M. Experimental investigation of microchannel coolers for the high heat flux thermal management of GaN-on-SiC semiconductor devices. International Journal of Heat and Mass Transfer, 2007, 50(23–24): 4767–4779
CrossRef Google scholar
[6]
Yan Z, Liu G, Khan J M, Balandin A A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, 3(3): 199–202
[7]
Tsurumi N, Ueno H, Murata T, Ishida H, Uemoto Y, Ueda T, Inoue K, Tanaka T. AlN passivation over AlGaN/GaN HFETs for surface heat spreading. IEEE Transactions on Electron Devices, 2010, 57(5): 980–985
CrossRef Google scholar
[8]
Liu W, Balandin A A. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys. Journal of Applied Physics, 2005, 97(12): 123705
CrossRef Google scholar
[9]
Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of In0.3Ga0.7N alloys. Journal of Electronic Materials, 2009, 38(7): 1132–1135
CrossRef Google scholar
[10]
Sztein A, Bowers J E, DenBaars S P, Nakamura S. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Applied Physics Letters, 2014, 104(4): 042106
CrossRef Google scholar
[11]
Sztein A, Haberstroh J, Bowers J E, Denbaars S P, Nakamura S. Calculated thermoelectric properties of InxGa1−xN, InxAl1−xN, and AlxGa1−xN. Journal of Applied Physics, 2013, 113(18): 183707
CrossRef Google scholar
[12]
Hurwitz E N, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I T. Thermopower study of GaN-based materials for next-generation thermoelectric devices and applications. Journal of Electronic Materials, 2011, 40(5): 513–517
CrossRef Google scholar
[13]
Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press. 1964
[14]
Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of InxGa1−xN alloys. Applied Physics Letters, 2008, 92(4): 042112
CrossRef Google scholar
[15]
Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S. High temperature thermoelectric properties of optimized InGaN. Journal of Applied Physics, 2011, 110(12): 123709
CrossRef Google scholar
[16]
Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L. Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1(1): 011305
CrossRef Google scholar
[17]
Marconnet A M, Asheghi M, Goodson K E. From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. Journal of Heat Transfer, 2013, 135(6): 061601–1/10
[18]
Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P. Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano, 2016, 10(1): 124–132
CrossRef Google scholar
[19]
Yu J K, Mitrovic S, Tham D, Varghese J, Heath J R. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotechnology, 2010, 5(10): 718–721
CrossRef Google scholar
[20]
Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P. Holey silicon as an efficient thermoelectric material. Nano Letters, 2010, 10(10): 4279–4283
CrossRef Google scholar
[21]
Chen G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford: Oxford University Press, 2005
[22]
Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals. Physical Review Letters, 2013, 110(2): 025902
CrossRef Google scholar
[23]
Song D, Chen G. Thermal conductivity of periodic microporous silicon films. Applied Physics Letters, 2004, 84(5): 687–689
CrossRef Google scholar
[24]
He Y, Donadio D, Lee J H, Grossman J C, Galli G. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano, 2011, 5(3): 1839–1844
CrossRef Google scholar
[25]
Ravichandran N K, Minnich A J. Coherent and incoherent thermal transport in nanomeshes. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(20): 205432
CrossRef Google scholar
[26]
Hopkins P E, Reinke C M, Su M F, Olsson R H III, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, El-Kady I. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Letters, 2011, 11(1): 107–112
CrossRef Google scholar
[27]
Lee J, Lim J, Yang P. Ballistic phonon transport in holey silicon. Nano Letters, 2015, 15(5): 3273–3279
CrossRef Google scholar
[28]
Tong T, Fu D, Levander A, Schaff W, Pantha B, Lu N, Liu B, Ferguson I, Zhang R, Lin J, Jiang H X, Wu J, Cahill D G. Suppression of thermal conductivity in InxGa1−xN alloys by nanometer-scale disorder. Applied Physics Letters, 2013, 102(12): 121906
CrossRef Google scholar
[29]
Hsiao T K, Chang H K, Liou S C, Chu M W, Lee S C, Chang C W. Observation of room-temperature ballistic thermal conduction persisting over 8.3 mm in SiGe nanowires. Nature Nanotechnology, 2013, 8(7): 534–538
CrossRef Google scholar
[30]
Hao Q, Xu D, Zhao H. Systematic studies of periodically nanoporous Si films for thermoelectric applications. MRS Proceedings, 2015, 1779, 27–32
[31]
Kim B, Nguyen J, Clews P J, Reinke C M, Goettler D, Leseman Z C, El-Kady I, Olsson R. Thermal conductivity manipulation in single crystal silicon via lithographycally defined phononic crystals micro electro mechanical systems (MEMS). In: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, 176–179
[32]
Marconnet A M, Kodama T, Asheghi M, Goodson K E. Phonon conduction in periodically porous silicon nanobridges. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(4): 199–219
CrossRef Google scholar
[33]
Nomura M, Nakagawa J, Sawano K, Maire J, Volz S. Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum. Applied Physics Letters, 2016, 109(17): 173104
CrossRef Google scholar
[34]
Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, El-Kady I. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nature Communications, 2015, 6: 7228
CrossRef Google scholar
[35]
Jain A, Yu Y J, McGaughey A J. Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(19): 195301
CrossRef Google scholar
[36]
Choi K, Arita M, Arakawa Y. Selective-area growth of thin GaN nanowires by MOCVD. Journal of Crystal Growth, 2012, 357: 58–61
CrossRef Google scholar
[37]
Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments, 2004, 75(12): 5119–5122
CrossRef Google scholar
[38]
Krukowski S, Witek A, Adamczyk J, Jun J, Bockowski M, Grzegory I, Lucznik B, Nowak G, Wróblewski M, Presz A, Gierlotka S, Stelmach S, Palosz B, Porowski S, Zinn P. Thermal properties of indium nitride. Journal of Physics and Chemistry of Solids, 1998, 59(3): 289–295
CrossRef Google scholar
[39]
Leitner J, Strejc A, Sedmidubský D, Růžička K. High temperature enthalpy and heat capacity of GaN. Thermochimica Acta, 2003, 401(2): 169–173
CrossRef Google scholar
[40]
Oh D W, Ravichandran J, Liang C W, Siemons W, Jalan B, Brooks C M, Huijben M, Schlom D G, Stemmer S, Martin L W, Majumdar A, Ramesh R, Cahill D G. Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Applied Physics Letters, 2011, 98(22): 221904
CrossRef Google scholar
[41]
Zhu J, Zhu Y, Wu X, Song H, Zhang Y, Wang X. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays. Applied Physics Letters, 2016, 108(23): 231903
CrossRef Google scholar
[42]
Majumdar A. Microscale heat conduction in dielectric thin films. Journal of Heat Transfer, 1993, 115(1): 7–16
CrossRef Google scholar
[43]
Jeong C, Datta S, Lundstrom M. Thermal conductivity of bulk and thin-film silicon: a Landauer approach. Journal of Applied Physics, 2012, 111(9): 093708
CrossRef Google scholar
[44]
Hua Y C, Cao B Y. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111: 1401–1408
CrossRef Google scholar
[45]
Hao Q, Xiao Y, Zhao H. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials. Journal of Applied Physics, 2016, 120(6): 065101
CrossRef Google scholar
[46]
Liu W, Balandin A A. Thermal conduction in AlxGa1−xN alloys and thin films. Journal of Applied Physics, 2005, 97(7): 073710
CrossRef Google scholar
[47]
Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. Journal of Applied Physics, 2004, 95(2): 682–693
CrossRef Google scholar
[48]
Dames C, Chen G. Thermal conductivity of nanostructured thermoelectric materials. In: Rowe D M ed. Thermoelectrics Handbook: Macro to Nano. Boca Raton, USA: CRC Press 2005, 42:1–16
[49]
Toberer E S, Zevalkink A, Snyder G J. Phonon engineering through crystal chemistry. Journal of Materials Chemistry, 2011, 21(40): 15843–15852
CrossRef Google scholar
[50]
Klemens P G. Theory of thermal conductivity in solids. In: Tye R P ed. Thermal Conductivity. London: Academic Press, 1969, 1–68
[51]
Roufosse M, Klemens P G. Thermal conductivity of complex dielectric crystals. Physical Review B: Condensed Matter and Materials Physics, 1973, 7(12): 5379–5386
CrossRef Google scholar
[52]
Julian C L. Theory of heat conduction in rare-gas crystals. Physical Review, 1965, 137(1A): A128–A137
CrossRef Google scholar
[53]
Slack G A, Galginaitis S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 1964, 133(1A): A253–A268
CrossRef Google scholar
[54]
Leibfried G, Schloemann E. Thermal conductivity of dielectric solids by a variational technique. Nachr Akad Wiss Goettingen, Math-Phys Kl, 2A. Math-Phys-Chem Abt, 1954, 23: 1366–1370
[55]
Freedman J P, Leach J H, Preble E A, Sitar Z, Davis R F, Malen J A. Universal phonon mean free path spectra in crystalline semiconductors at high temperature. Scientific Reports, 2013, 3(1): 2963
CrossRef Google scholar
[56]
Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(3): 035437
CrossRef Google scholar
[57]
Lindsay L, Broido D, Reinecke T. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, 109(9): 095901
CrossRef Google scholar
[58]
Mion C, Muth J, Preble E, Hanser D. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Applied Physics Letters, 2006, 89(9): 092123
CrossRef Google scholar
[59]
Tamura S I. Isotope scattering of dispersive phonons in Ge. Physical Review B: Condensed Matter and Materials Physics, 1983, 27(2): 858–866
CrossRef Google scholar
[60]
Ziman J M. Electrons and Phonons: the Theory of Transport Phenomena in Solids. Oxford: Oxford University Press, 2001
[61]
Klemens P G. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 1955, 68(12): 1113–1128
CrossRef Google scholar
[62]
Wright A. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. Journal of Applied Physics, 1997, 82(6): 2833–2839
CrossRef Google scholar
[63]
Pantha B, Dahal R, Li J, Lin J, Jiang H, Pomrenke G. Thermoelectric properties of InxGa1−xN alloys. Applied Physics Letters, 2008, 92(4): 042112
CrossRef Google scholar
[64]
Regner K T, Sellan D P, Su Z, Amon C H, McGaughey A J, Malen J A. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nature Communications, 2013, 4: 1640
CrossRef Google scholar
[65]
Koh Y K, Cahill D G. Frequency dependence of the thermal conductivity of semiconductor alloys. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(7): 075207
CrossRef Google scholar
[66]
Kucukgok B, Wu X, Wang X, Liu Z, Ferguson I T, Lu N. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP Advances, 2016, 6(2): 025305
CrossRef Google scholar
[67]
Mingo N, Hauser D, Kobayashi N, Plissonnier M, Shakouri A. “Nanoparticle-in-Alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Letters, 2009, 9(2): 711–715
CrossRef Google scholar
[68]
Koh Y K, Singer S L, Kim W, Zide J M O, Lu H, Cahill D G, Majumdar A, Gossard A C. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. Journal of Applied Physics, 2009, 105(5): 054303
CrossRef Google scholar
[69]
Jeżowski A, Danilchenko B, Boćkowski M, Grzegory I, Krukowski S, Suski T, Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, 128(2–3): 69–73
CrossRef Google scholar
[70]
Jung K, Cho M, Zhou M. Strain dependence of thermal conductivity of [0001]-oriented GaN nanowires. Applied Physics Letters, 2011, 98(4): 041909
CrossRef Google scholar
[71]
Hao Q, Zhao H, Xiao Y. Multi-length scale thermal simulations of GaN-on-SiC high electron mobility transistors. In: Zhang Y, He Y-L ed. Multiscale Thermal Transport in Energy Systems. Hauppauge. New York: Nova Science Publishers, 2016
[72]
Han Y J. Intrinsic thermal-resistive process of crystals: umklapp processes at low and high temperatures. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(13): 8977– 8980
CrossRef Google scholar
[73]
Dubey K, Misho R. Three-phonon scattering relaxation rate and phonon conductivity. Application to Mg2Ge. Physica Status Solidi. B, Basic Research, 1977, 84(1): 69–81
CrossRef Google scholar
[74]
Joshi Y, Verma G. Analysis of phonon conductivity: application to Si. Physical Review B: Condensed Matter and Materials Physics, 1970, 1(2): 750–755
CrossRef Google scholar
[75]
Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134
CrossRef Google scholar

Acknowledgments

This material is based on research sponsored by Defense Advanced Research Agency (DARPA) under agreement number FA8650-15-1-7523 and US Air Force Office of Scientific Research under award number FA9550-16-1-0025. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory (AFRL) and the DARPA or the US Government. X.W.W., J.Z., and X.J.W. would like to thank the supports from the National Science Foundation (NSF) through the University of Minnesota MRSEC under Award Number DMR-1420013 and from the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(296 KB)

Accesses

Citations

Detail

Sections
Recommended

/