Impacts of solar multiple on the performanceof direct steam generation solar power tower plant with integratedthermal storage

Yan LUO , Xiaoze DU , Lijun YANG , Chao XU , Muhammad AMJAD

Front. Energy ›› 2017, Vol. 11 ›› Issue (4) : 461 -471.

PDF (481KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (4) : 461 -471. DOI: 10.1007/s11708-017-0503-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Impacts of solar multiple on the performanceof direct steam generation solar power tower plant with integratedthermal storage

Author information +
History +
PDF (481KB)

Abstract

Solar multiple (SM) and thermal storage capacity are two keydesign parameters for revealing the performance of direct steam generation(DSG) solar power tower plant. In the case of settled land area, SMand thermal storage capacity can be optimized to obtain the minimumlevelized cost of electricity (LCOE) by adjusting the power generationoutput. Taking the dual-receiver DSG solar power tower plant witha given size of solar field equivalent electricity of 100 MWe in Sevilla as a reference case, the minimum LCOE is21.77 ¢/kWhe with an SM of 1.7 and a thermalstorage capacity of 3 h. Besides Sevilla, two other sites are alsointroduced to discuss the influence of annual DNI. When compared withthe case of Sevilla, the minimum LCOE and optimal SM of the San Josesite change just slightly, while the minimum LCOE of the Bishop sitedecreases by 32.8% and the optimal SM is reduced to 1.3. The influenceof the size of solar field equivalent electricity is studied as well.The minimum LCOE decreases with the size of solar field, while theoptimal SM and thermal storage capacity still remain unchanged. Inaddition, the sensitivity of different investment in sub-system isinvestigated. In terms of optimal SM and thermal storage capacity,they can decrease with the cost of thermal storage system but increasewith the cost of power generation unit.

Keywords

direct steam generation / solarpower tower / solar multiple / thermalenergy storage capacity / levelized cost of electricity(LCOE)

Cite this article

Download citation ▾
Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD. Impacts of solar multiple on the performanceof direct steam generation solar power tower plant with integratedthermal storage. Front. Energy, 2017, 11(4): 461-471 DOI:10.1007/s11708-017-0503-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang H LBaeyens  JDegrève J Cacères G. Concentrated solar power plants: reviewand design methodology. Renewable &Sustainable Energy Reviews201322: 466–481 

[2]

Ma XXu  CYu Z Ju X. A review of salt hydrate-based sorption technologies for long-term thermal energystorage. Science Bulletin201560(36): 3569–3579

[3]

Kolb G JHo  C KMancini  T RGary  J A. Power tower technology roadmap and cost reduction plan. Report No. SAND2011–2419, Sandia NationalLaboratories, Albuquerque, NM2011

[4]

Romero MBuck  RPacheco J E. An update on solar central receiver systems,projects, and technologies. Journal ofSolar Energy Engineering2002124(2): 98–108

[5]

Tehrani S S M Taylor R A Saberi P Diarce G. Design and feasibility of high temperature shell and tube latentheat thermal energy storage system for solar thermal power plants. Renewable Energy201696: 120–136 

[6]

Osuna RFernandez  VRomero S Romero M Sanchez M. PS10: a 11.0-MW solar tower power plant with saturated steam receiver. In: Proceedings of the 12th Solar PACES InternationalSymposium on Concentrated Solar Power and Chemical Energy Technologies 2014, Oaxaca, México

[7]

Birnbaum JEck  MFichtner M Hirsch T Lehmann D Zimmermann G. A direct steam generation solar power plant with integratedthermal storage. Journal of Solar EnergyEngineering2010132(3): 031014

[8]

Feldhoff J FSchmitz  KEck M Schnatbaum-Laumann L Laing D Ortiz-Vives F Schulte-Fischedick J. Comparative system analysis of directsteam generation and synthetic oil parabolic trough power plants withintegrated thermal storage. Solar Energy201286(1): 520–530

[9]

Laing DBahl  CBauer T Lehmann D Steinmann W D. Thermal energy storage fordirect steam generation. Solar Energy201185(4): 627–633

[10]

Laing DBauer  TLehmann D Bahl C. Development of a thermal energy storage system for parabolic troughpower plants with direct steam generation. Journal of Solar Energy Engineering2010132(2): 021011

[11]

Li YYang  Y. Impacts of solar multiples on the performance of integrated solar combined cyclesystems with two direct steam generation fields. Applied Energy2015160: 673–680

[12]

Pacheco J EBradshaw  R WDawson  D BRosa  W DGilbert  RGoods S Hale M J Jacobs P Jones S A Kolb G J Prairie M R Reilly H E Showalter S K Vant-Hull L L. Final test and evaluationresults from the Solar Two project. Report No. SAND2002–0120, Sandia National Laboratories, Albuquerque,NM2002

[13]

Moore RVernon  MHo C K Siegel N P. Design considerations for concentrating solar power tower systemsemploying molten salt. Report No. SAND2010–6978,Sandia National Laboratories, Albuquerque, NM2010

[14]

Rodríguez-Sánchez M R Soria-Verdugo A Almendros-Ibáñez J AAcosta-Iborra A Santana D. Thermal design guidelines of solar power towers. Applied Thermal Engineering201463(1): 428–438

[15]

Collado F JGuallar  J. A review of optimized design layouts for solar power tower plantswith campo, code. Renewable & SustainableEnergy Reviews201320: 142–154

[16]

Boudaoud SKhellaf  AMohammedi K Behar O. Thermal performance prediction and sensitivity analysisfor future deployment of molten salt cavity receiver solar power plantsin Algeria. Energy Conversion and Management201589: 655–664 

[17]

Cocco DSerra  F. Performance comparison of two-tank direct and thermocline thermal energy storagesystems for 1MWe class concentrating solar power plants. Energy201581: 526–536 

[18]

Montes M JAbánades  AMartínez-Val J M. Performance of a direct steam generation solar thermal power plant for electricityproduction as a function of the solar multiple. Solar Energy200983(5): 679–689

[19]

Jorgenson JDenholm  PMehos M Turchi C. Estimating the performance and economic value of multipleconcentrating solar power technologies in a production cost model. Technical Report. National Renewable Energy Laboratory,Golden, CO2013

[20]

Luo YDu  XWen D. Novel design of central dual-receiverfor solar power tower. Applied ThermalEngineering201591: 1071–1081 

[21]

Blair NDobos  A PFreeman  JNeises T Wagner M Ferguson T Gilman P Janzou S. System advisor model, sam 2014.1.14:general description. Technical Report.National Renewable Energy Laboratory, Golden, CO2014

[22]

Liu J. Solar Thermal Dynamic Power Generation Technology. Beijing: Chemical Industry Press2012 (in Chinese)

[23]

Fan QYan  WYan S. Boiler Principle. Beijing: China Electric Power Press2004 (in Chinese)

[24]

Flueckiger S M Iverson B D Garimella S V Pacheco J E. System-level simulation of a solar power tower plantwith thermocline thermal energy storage. Applied Energy2014113: 86–96 

[25]

Montes M JAbánades  AMartinez-Val J M Valdés M. Solar multiple optimization for a solar-only thermalpower plant, using oil as heat transfer fluid in the parabolic troughcollectors. Solar Energy200983(12): 2165–2176

[26]

Collado F JGuallar  J. Two-stages optimised design of the collector field of solar powertower plants. Solar Energy2016135: 884–896

[27]

Turchi C SHeath  G A. Molten salt power tower cost model for the system advisor model (sam). Office of Scientific & Technical InformationTechnical Reports. University of North Texas Libraries, 2013

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbHGermany

AI Summary AI Mindmap
PDF (481KB)

5692

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/