β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI , Cheng HE , Elena V. TIMOFEEVA , Yujia DING , Javier PARRONDO , Carlo SEGRE , Vijay RAMANI

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 401 -409.

PDF (393KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 401 -409. DOI: 10.1007/s11708-017-0496-0
RESEARCH ARTICLE
RESEARCH ARTICLE

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Author information +
History +
PDF (393KB)

Abstract

As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl2 precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH)2 was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH)2 could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH)2 was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated usingin-situ X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH)2 and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

Keywords

nano-suspension flow battery / β-Ni(OH)2 / scanning electronic microscopy (SEM) / X-ray diffraction (XRD) / X-ray adsorption near edge structure (XANES) / extended X-ray absorption fine structure (EXAFS)

Cite this article

Download citation ▾
Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI. β-Nickel hydroxide cathode material for nano-suspension redox flow batteries. Front. Energy, 2017, 11(3): 401-409 DOI:10.1007/s11708-017-0496-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou HZhou  Z. Effects of ultrasonic treatment on the structure and electrochemical performance of spherical b-Ni(OH)2. Chinese Journal of Chemistry200624(1): 37–44

[2]

Shuka A KVenugopalah  SHariprakash B . Nickel-based rechargeable batteries. Journal of Power Sources2001100(1–2): 125–148 

[3]

Freitas M B J G . Nickel hydroxide powder for NiOOH/Ni(OH)2 electrodes of the alkaline batteries. Journal of Power Sources200193(1–2): 163–173

[4]

Xu PHan  XZhang B Lv ZLiu  X. Characterization of an ultrafine nickel hydroxide from supersonic co-precipitation method. Journal of Alloys and Compounds2007436(1–2): 369–374

[5]

Cheng JZhang  LYang Y Wen YCao  GWang X . Preliminary study of single flow zinc-nickel battery. Electrochemistry Communications20079(11): 2639–2642

[6]

Jia CPan  FZhu Y Huang Q Lu LWang  Q. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Science Advances20151(10): e1500886

[7]

Pan JSun  YWan P Wang ZLiu  X. Synthesis, characterization and electrochemical performance of battery grade NiOOH. Electrochemistry Communications20057(8): 857–862

[8]

Guan XDeng  J. Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters200761(3): 621–625

[9]

Han XXu  PXu C Zhao LMo  ZLiu T . Study of the effects of nanometer b-Ni(OH)2 in nickel hydroxide electrodes. Electrochimica Acta200550(14): 2763–2769

[10]

Köhler UAntonius  CBauerlein P . Advances in alkaline batteries. Journal of Power Sources2004127(1–2): 45–52

[11]

Liu XYu  L. Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Materials Letters200458(7–8): 1327–1330

[12]

Losev A VPetrii  O A. Effect of the aggregate stability of a suspension on the rate of charge transfer from the current collector of the suspension electrode to suspension particles. Elektrokhimiya197612: 1749

[13]

Garche JDietz  HWiesener K . The suspension electrode technique for electrochemical analysis of lead dioxide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry1984180(1–2): 577–585

[14]

Duduta MHo  BWood V C Limthongkul P Brunini V E Carter W C Chiang Y M . Semi-solid lithium rechargeable flow battery. Advanced Energy Materials20114(1): 551–556

[15]

Pomerantseva, Kumbur E C Gogotsi Y . Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Applied Materials & Interfaces, 20146(11): 8886–8893

[16]

Pandya K IO’Grady  W ECorrigan  D AMcBreen  JHoffman R W . Extended X-ray absorption fine structure investigation of nickel hydroxides. Journal of Physical Chemistry199094(1): 21–26

[17]

Ichiyanagi YKondoh  HYokoyama T Okamoto K Nagai K Ohta T. X-ray absorption fine-structure study on the Ni(OH)2 monolayer nanoclusters. Chemical Physics Letters2003379(3–4): 345–350

[18]

Farley N R S Gurman S J Hillman A R In-situ EXAFS study of nickel hydroxide electrodes during discharge. Journal of Synchrotron Radiation19996(3): 198–200

[19]

Morishita MOchiai  SKakeya T Ozaki T Kawabe Y Watada M Tanase S Sakai T . Phase transformation in the charge-discharge process and the structural analysis by synchrotron XAFS and XRD for nickel hydroxide electrode. Electrochemistry200876(11): 802–807

[20]

Zimmerman A H . Mechanisms for capacity fading in the NiH2 cell and its effects on cycle life. The 1992 NASA Aerospace Battery Workshop. NASA CP-31021993, 153–175

[21]

Tessier CHaumesser  P HBernard  PDelmas C . The structure of Ni(OH)2: from the ideal material to the electrochemically active one. Journal of the Electrochemical Society1999146(6): 2059–2067

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (393KB)

5687

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/