β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

PDF(393 KB)
PDF(393 KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 401-409. DOI: 10.1007/s11708-017-0496-0
RESEARCH ARTICLE
RESEARCH ARTICLE

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Author information +
History +

Abstract

As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl2 precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH)2 was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH)2 could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH)2 was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated usingin-situ X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH)2 and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

Keywords

nano-suspension flow battery / β-Ni(OH)2 / scanning electronic microscopy (SEM) / X-ray diffraction (XRD) / X-ray adsorption near edge structure (XANES) / extended X-ray absorption fine structure (EXAFS)

Cite this article

Download citation ▾
Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI. β-Nickel hydroxide cathode material for nano-suspension redox flow batteries. Front. Energy, 2017, 11(3): 401‒409 https://doi.org/10.1007/s11708-017-0496-0

References

[1]
Zhou H, Zhou  Z. Effects of ultrasonic treatment on the structure and electrochemical performance of spherical b-Ni(OH)2. Chinese Journal of Chemistry, 2006, 24(1): 37–44
CrossRef Google scholar
[2]
Shuka A K, Venugopalah  S, Hariprakash B . Nickel-based rechargeable batteries. Journal of Power Sources, 2001, 100(1–2): 125–148 
CrossRef Google scholar
[3]
Freitas M B J G . Nickel hydroxide powder for NiOOH/Ni(OH)2 electrodes of the alkaline batteries. Journal of Power Sources, 2001, 93(1–2): 163–173
CrossRef Google scholar
[4]
Xu P, Han  X, Zhang B ,  Lv Z, Liu  X. Characterization of an ultrafine nickel hydroxide from supersonic co-precipitation method. Journal of Alloys and Compounds, 2007, 436(1–2): 369–374
CrossRef Google scholar
[5]
Cheng J, Zhang  L, Yang Y ,  Wen Y, Cao  G, Wang X . Preliminary study of single flow zinc-nickel battery. Electrochemistry Communications, 2007, 9(11): 2639–2642
CrossRef Google scholar
[6]
Jia C, Pan  F, Zhu Y ,  Huang Q ,  Lu L, Wang  Q. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Science Advances, 2015, 1(10): e1500886
CrossRef Google scholar
[7]
Pan J, Sun  Y, Wan P ,  Wang Z, Liu  X. Synthesis, characterization and electrochemical performance of battery grade NiOOH. Electrochemistry Communications, 2005, 7(8): 857–862
CrossRef Google scholar
[8]
Guan X, Deng  J. Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 2007, 61(3): 621–625
CrossRef Google scholar
[9]
Han X, Xu  P, Xu C ,  Zhao L, Mo  Z, Liu T . Study of the effects of nanometer b-Ni(OH)2 in nickel hydroxide electrodes. Electrochimica Acta, 2005, 50(14): 2763–2769
CrossRef Google scholar
[10]
Köhler U, Antonius  C, Bauerlein P . Advances in alkaline batteries. Journal of Power Sources, 2004, 127(1–2): 45–52
CrossRef Google scholar
[11]
Liu X, Yu  L. Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Materials Letters, 2004, 58(7–8): 1327–1330
CrossRef Google scholar
[12]
Losev A V, Petrii  O A. Effect of the aggregate stability of a suspension on the rate of charge transfer from the current collector of the suspension electrode to suspension particles. Elektrokhimiya, 1976, 12: 1749
[13]
Garche J, Dietz  H, Wiesener K . The suspension electrode technique for electrochemical analysis of lead dioxide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 180(1–2): 577–585
CrossRef Google scholar
[14]
Duduta M, Ho  B, Wood V C ,  Limthongkul P ,  Brunini V E ,  Carter W C ,  Chiang Y M . Semi-solid lithium rechargeable flow battery. Advanced Energy Materials, 2011, 4(1): 551–556
[15]
Pomerantseva, Kumbur E C ,  Gogotsi Y . Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Applied Materials & Interfaces, 2014, 6(11): 8886–8893
[16]
Pandya K I, O’Grady  W E, Corrigan  D A, McBreen  J, Hoffman R W . Extended X-ray absorption fine structure investigation of nickel hydroxides. Journal of Physical Chemistry, 1990, 94(1): 21–26
CrossRef Google scholar
[17]
Ichiyanagi Y, Kondoh  H, Yokoyama T ,  Okamoto K ,  Nagai K ,  Ohta T. X-ray absorption fine-structure study on the Ni(OH)2 monolayer nanoclusters. Chemical Physics Letters, 2003, 379(3–4): 345–350
CrossRef Google scholar
[18]
Farley N R S ,  Gurman S J ,  Hillman A R . In-situ EXAFS study of nickel hydroxide electrodes during discharge. Journal of Synchrotron Radiation, 1999, 6(3): 198–200
CrossRef Google scholar
[19]
Morishita M, Ochiai  S, Kakeya T ,  Ozaki T ,  Kawabe Y ,  Watada M ,  Tanase S ,  Sakai T . Phase transformation in the charge-discharge process and the structural analysis by synchrotron XAFS and XRD for nickel hydroxide electrode. Electrochemistry, 2008, 76(11): 802–807
CrossRef Google scholar
[20]
Zimmerman A H . Mechanisms for capacity fading in the NiH2 cell and its effects on cycle life. The 1992 NASA Aerospace Battery Workshop. NASA CP-3102, 1993, 153–175
[21]
Tessier C, Haumesser  P H, Bernard  P, Delmas C . The structure of Ni(OH)2: from the ideal material to the electrochemically active one. Journal of the Electrochemical Society, 1999, 146(6): 2059–2067
CrossRef Google scholar

Acknowledgements

This research was funded by US Department of Energy, Advanced Research Funding Agency – Energy (ARPA-E) award #AR000387. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the Argonne National Laboratory, Advanced Photon Source and Electron Microscopy Center are supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH113.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(393 KB)

Accesses

Citations

Detail

Sections
Recommended

/