Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG , Travis J. OMASTA , Justin M. ROLLER , William E. MUSTAIN

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 299 -309.

PDF (479KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 299 -309. DOI: 10.1007/s11708-017-0495-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Author information +
History +
PDF (479KB)

Abstract

A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm2 and a mass activity of 0.59 A/mgPd at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher in-situ alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm2 operating on H2/O2 and 700 MW/cm2 operating on H2/Air (CO2-free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/Vulcan catalyst also exhibited high stability during a short-term, in-situ AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improvement over most AEMFCs reported in the literature to date.

Graphical abstract

Keywords

alkaline exchange membrane (AEM) / fuel cell / Pd-Cu / oxygen reduction / high performance / water

Cite this article

Download citation ▾
Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells. Front. Energy, 2017, 11(3): 299-309 DOI:10.1007/s11708-017-0495-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang H, Shen P K. Recent development of polymer electrolyte membranes for fuel cells. Chemical Reviews,  2012,  112(5): 2780–2832

[2]

Service R F. Full cells: shrinking fuel cells promise power in your pocket. Science, 2002, 296(5571): 1222–1224

[3]

Li X, Popov B N, Kawahara T, Yanagi H. Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. Journal of Power Sources,2011,  196(4): 1717–1722

[4]

Shao M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. Journal of Power Sources,  2011,  196(5): 2433–2444

[5]

Spendelow J S, Wieckowski A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Physical Chemistry Chemical Physics Pccp,  2007,  9(21): 2654

[6]

Xin L, Zhang Z, Wang Z, Qi J, Li W. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell. Frontiers in Chemistry, 2013, 1: 16

[7]

Kruusenberg I, Matisen L, Shah Q, Kannan A M, Tammeveski K. Non-platinum cathode catalysts for alkaline membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37(5): 4406–4412

[8]

Sheng W, Bivens A P, Myint M, Zhuang Z, Forest R V, Fang Q, Chen J G, Yan Y. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy & Environmental Science, 2014, 7(5): 1719–1724

[9]

Lu Y, Jiang Y, Gao X, Wang X, Chen W. Strongly coupled Pd nanotetrahedron/ tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. Journal of the American Chemical Society, 2014, 136(33): 11687–11697

[10]

Gewirth A A, Thorum M S. Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Cheminform,  2010,  41(28): 3557–3566

[11]

Han B, Carlton C E, Kongkanand A, Kukreja R S, Theobald B R, Gan L. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy & Environmental Science,  2014,  8(1): 258–266

[12]

Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang Y M, Duan X, Mueller T, Huang Y. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science, 2015, 348(6240): 1230–1234

[13]

Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343(6177): 1339–1343

[14]

Service R F. Platinum in fuel cells gets a helping hand. Science, 2007, 315(5809): 172

[15]

Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10(10): 780–786

[16]

Peng X, Zhao S, Omasta T J, Roller J M, Mustain W E. Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2016, 203: 927–935

[17]

Shao M H, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic M B, Adzic R R. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir, 2006, 22(25): 10409–10415

[18]

Neergat M, Gunasekar V, Rahul R. Carbon-supported Pd-Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance. Journal of Electroanalytical Chemistry, 2011, 658(1–2): 25–32

[19]

Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins D L. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. Journal of Power Sources, 2007, 167(2): 243–249

[20]

Yang R, Bian W, Strasser P, Toney M F. Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2013, 222(2): 169–176

[21]

Wu W P, Periasamy A P, Lin G L, Shih Z Y, Chang H T. Palladium copper nanosponges for electrocatalytic reduction of oxygen and glucose detection. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(18): 9675–9681

[22]

Jiang K, Wang P, Guo S, Zhang X, Shen X, Lu G, Su D, Huang X Q. Ordered nanoparticles hot paper ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angewandte Chemie, 2016, 55(31): 9030–9035

[23]

Fouda-Onana F, Bah S, Savadogo O. Palladium-copper alloys as catalysts for the oxygen reduction reaction in an acidic media I: correlation between the ORR kinetic parameters and intrinsic physical properties of the alloys. Journal of Electroanalytical Chemistry, 2009, 636(1–2): 1–9

[24]

Kariuki N N, Wang X, Mawdsley J R, Ferrandon M S, Niyogi S G, Vaughey J T, Myers D G. Colloidal synthesis and characterization of carbon-supported Pd-Cu nanoparticle oxygen reduction electrocatalysts. Chemistry of Materials, 2010, 22(14): 4144–4152

[25]

Sha Y, Yu T H, Merinov B V, Shirvanian P, Goddard W A. Mechanism for oxygen reduction reaction on Pt3Ni alloy fuel cell cathode. Journal of Physical Chemistry C,  2012,  116(40): 21334–21342

[26]

You D J, Jin S A, Lee K H, Pak C, Choi K H, Chang H. Improvement of activity for oxygen reduction reaction by decoration of Iron PdCu/C catalyst. Catalysis Today,  2012,  185(1): 138–142

[27]

Wu J, Shan S, Luo J, Joseph P, Petkov V, Zhong C J. PdCu nanoalloy electrocatalysts in oxygen reduction reaction: role of composition and phase state in catalytic synergy. Acs Applied Materials & Interfaces,  2015,  7(46): 25906–25913

[28]

Tang W, Henkelman G. Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Journal of Chemical Physics,  2009,  130(19): 1–351

[29]

Mustain W E, Kepler K, Prakash J. CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochimica Acta,  2007,  52(5): 2102–2108

[30]

Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Lyngby D, Jo H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B,  2004,  108(46): 17886–17892

[31]

Zhang L, Hou F, Tan Y W. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Journal of Physical Chemistry B,  2004,  108(46): 17886–17892

[32]

Howard B H, Killmeyer R P, Rothenberger K S, Cugini A V, Morreale B D, Enick R M. Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressures. Journal of Membrane Science,  2004,  241(2): 207–218

[33]

Choi R, Jung J, Kim G, Song K, Kim Y I, Jung S C, Han Y K, Song H, Kang Y M. Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy & Environmental Science, 2014, 7(4): 1362

[34]

Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. Journal of the American Chemical Society, 2011, 133(5): 1150–1152

[35]

Poynton S D, Slade R C T, Omasta T J, Mustain W E, Escudero-Cid R, Ocón P, Varcoe J R. Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. Journal of Materials Chemistry A,  2014,  2(14): 5124–5130

[36]

Fukuta K. Eelctrolyte materials for AMFCs and AMFC performance. Tokuyama Comporation.2011-05-08

[37]

Ponce-González J, Whelligan D K, Wang L, Soualhi R, Wang Y, Peng Y Q, Peng H Q,   Apperley D C,  Sarode H N,  Pandey T P,   Divekar A G,   Seifert S,   Herring A M,  Zhuang L,   Varcoe J R . High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy & Environmental Science,  2016,  9(12): 3724–3735

[38]

Omasta T J, Wang L, Peng X, Lewis C A, Varcoe J R, Mustain W E. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. Journal of Power Sources,  2017, http://doi.org/10.1016/j.jpowsour.2017.05.006

[39]

Lopes T, Antolini E, Colmati F, Gonzalez E R. Carbon supported Pt-Co (3:1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells. Journal of Power Sources, 2007, 164(1): 111–114

[40]

Yamauchi M, Tsukuda T. Production of an ordered (B2) CuPd nanoalloy by low-temperature annealling under hydrogen atmosphere. Dalton Transactions,  2011,  40(18): 4842–4845

[41]

Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. Journal of the American Chemical Society,  2010,  132(16): 5576–5577

[42]

Xing Y, Li L, Chusuei C C, Hull R V. Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir, 2005, 21(9): 4185–4190

[43]

Kundu S, Wang Y, Xia W, Muhler M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. Journal of Physical Chemistry C, 2008, 112(43): 16869–16878

[44]

Xie X, Nie Y, Chen S, Ding W, Qi X, Li L. A catalyst superior to carbon-supported-platinum for promotion of the oxygen reduction reaction: reduced-polyoxometalate supported palladium. Journal of Materials Chemistry A,  2015,  3(26): 13962–13969

[45]

Nguyen S T, Law H M, Nguyen H T, Kristian N, Wang S, Chan S H, Wang X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Applied Catalysis B Environmental,  2009,  91(1–2): 507–515

[46]

Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angewandte Chemie International Edition,  2013,  52(33): 8526–8544

[47]

Sun T, Xu L, Li S, Chai W, Huang Y, Yan Y S, Chen J F. Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction. Applied Catalysis B Environmental,  2016,  193: 1–8

[48]

Mayrhofer K J J, Strmcnik D, Blizanac B B, Stamenkovic V, Arenz M, Markovic N M. Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochimica Acta ,  2008,  53(7): 3181–3188

[49]

Garsany Y, Baturina O A, Swider-Lyons K E, Kocha S S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Analytical Chemistry,  2010,  82(15): 6321–6328

[50]

Snyder J, Fujita T, Chen M W, Erlebacher J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nature Materials,  2010,  9(11): 904–907

[51]

Shrestha S, Liu Y, Mustain W E. Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports. Catalysis Reviews, 2011, 53(3): 256–336

[52]

Myles T D, Kiss A M, Grew K N, Peracchio A A, Nelson G J, Chiu W K S. Calculation of water diffusion coefficients in an anion exchange membrane using a water permeation technique. Journal of the Electrochemical Society,  2011,  158(7): B790–B796

[53]

Kiss A M, Myles T D, Grew K N, Peracchio A A, Nelson G J, Chiu W K S. Carbonate and bicarbonate ion transport in alkaline anion exchange membranes. Journal of the Electrochemical Society,  2013,  160(160) : F994–F999

[54]

Wang Y, Wang G, Li G, Huang B, Pan J, Liu Q. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy & Environmental Science,  2014,  8(1): 177–181

[55]

Kaspar R B, Letterio M P, Wittkopf J A, Gong K, Gu S, Yan Y. Manipulating water in high-performance hydroxide exchange membrane fuel cells through asymmetric humidification and wetproofing. Journal of the Electrochemical Society ,  2015,  162(6): F483–F488

[56]

Wright A G, Fan J, Britton B, Weissbach T, Lee H F, Kitching E A, Peckham T J, Holdcroft S. Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy & Environmental Science, 2016, 9(6): 2130–2142

[57]

Zhu L, Pan J, Wang Y, Han J, Zhuang L, Hickner M A. Multication side chain anion exchange membranes. Macromolecules, 2016, 49(3): 815–824

[58]

Miller H A, Lavacchi A, Vizza F, Marelli M, Di Benedetto F, Acapito F D. Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angewandte Chemie,  2016,  55(20): 6004

[59]

Mamlouk M, Horsfall J A, Williams C, Scott K. Radiation grafted membranes for superior anion exchange polymer membrane fuel cells performance. International Journal of Hydrogen Energy,  2012,  37(16): 11912–11920

[60]

Ponce-gonza J, Whelligan D K, Wang L, Bance-soualhi R, Pandey T P, Divekar A G, Seifert S,   Herring A M,   Zhuang L, Varcoe J R.High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy & Environmental Science,  2016,  9(12): 3724–3735

[61]

Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science,  2014,  7(10): 3135–3191

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (479KB)

Supplementary files

FEP-17029-OF-PX_suppl_1

4075

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/