Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance cathode materials for lithium-ion batteries

Shifeng YANG , Wenfeng REN , Jian CHEN

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 374 -382.

PDF (522KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 374 -382. DOI: 10.1007/s11708-017-0494-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance cathode materials for lithium-ion batteries

Author information +
History +
PDF (522KB)

Abstract

The preparation of Li4SiO4-coated LiNi0.5Mn1.5O4 materials by sintering the SiO2-coated nickel-manganese oxides with lithium salts using abundant and low-cost sodium silicate as the silicon source was reported. The samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It was found that a uniform and complete SiO2 coating layer could be obtained at a suitable pH value of 10, which transformed to a good Li4SiO4 coating layer afterwards. When used as the cathode materials for lithium-ion batteries, the Li4SiO4-coated LiNi0.5Mn1.5O4 samples deliver a better electrochemical performance in terms of the discharge capacity, rate capability, and cycling stability than that of the pristine material. It can still deliver 111.1 mAh/g at 20 C after 300 cycles, with a retention ratio of 93.1% of the stable capacity, which is far beyond that of the pristine material (101.3 mAh/g, 85.6%).

Keywords

lithium-ion batteries / cathode material / LiNi0.5Mn1.5O4 / lithium-ion conductor / coating

Cite this article

Download citation ▾
Shifeng YANG, Wenfeng REN, Jian CHEN. Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance cathode materials for lithium-ion batteries. Front. Energy, 2017, 11(3): 374-382 DOI:10.1007/s11708-017-0494-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hai BShukla  A KDuncan  HChen G Y . The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. Journal of Materials Chemistry A, Materials for Energy and Sustainability20131(3): 759–769 

[2]

Patoux SDaniel  LBourbon C Lignier H Pagano C Le Cras F Jouanneau S Martinet S . High voltage spinel oxides for Li-ion batteries from the material research to the application. Journal of Power Sources2009189(1): 344–352

[3]

Ma JHu  PCui G Chen L. Surface and interface issues in spinel LiMn1.5Ni0.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chemistry of Materials201628(11): 3578–3606

[4]

Kim J HPieczonka  N PYang  L. Challenges and approaches for high-voltage spinel lithium-ion batteries. ChemPhysChem201415(10): 1940–1954

[5]

Pieczonka N P W Liu Z Y Lu POlson  K LMoote  JPowell B P Kim J H . Understanding transition-metal dissolution behavior in LiMn1.5Ni0.5O4 high-voltage spinel for lithium ion batteries. Journal of Physical Chemistry C2013117(31): 15947–15957

[6]

Kim J HPieczonka  N P WLi  ZWu Y Harris S Powell B R . Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochimica Acta201390: 556–562 

[7]

Lee YMun  JKim D W Lee J K Choi W. Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol-gel method for lithium ion batteries. Electrochimica Acta2014115: 326–331 

[8]

Kunduraci MAmatucci  G G. Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2-xNixO4 (0.50≥x≥0.36) spinels. Journal of Power Sources2007165(1): 359–367

[9]

Deng J CXu  Y LLi  LFeng T Y Li L. Microporous LiAlSiOwith high ionic conductivity working as a coating material and water adsorbent for LiNi0.5Mn1.5O4cathode. Journal of Materials Chemistry A, Materials for Energy and Sustainability20164(17): 6561–6568

[10]

Zhong G BWang  Y YYu  Y QChen  C H. Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe,Co,Cr) 5V cathode materials for lithium ion batteries. Journal of Power Sources2012205: 385–393

[11]

Sun PMa  YZhai T Li H. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochimica Acta2016191: 237–246 

[12]

Wang YYang  GYang Z Zhang L Fu MLong  HLi Z Huang Y Lu P. High power and capacity of LiNi0.5Mn1.5O4 thin films cathodes prepared by pulsed laser deposition. Electrochimica Acta2013102: 416–422 

[13]

Chen Z XQiu  SCao Y L Ai X P Xie KHong  X BYang  H X. Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry201222(34): 17768–17772 

[14]

Choi S HHong  Y JKang  Y C. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. Nanoscale20135(17): 7867–7871

[15]

Tu W QXing  L DXia  PXu M Q Liao Y H Li W S . Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature. Electrochimica Acta2016204: 192–198

[16]

Zhang LZhang  Z CWu  H MAmine  K. Novel redox shuttle additive for high-voltage cathode materials. Energy & Environmental Science20114(8): 2858–2862 

[17]

Liu JManthiram  A. Improved electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification. Journal of the Electrochemical Society2009156(1): A66–A72

[18]

Noguchi TYamazaki  INumata T Shirakata M . Effect of Bi oxide surface treatment on 5 spinel LiNi0.5Mn1.5-xTixO4. Journal of Power Sources2007174(2): 359–365

[19]

Zhao G YLin  Y BZhou  TLin Y Huang Y D Huang Z G . Enhanced rate and high-temperature performance of La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium ion battery. Journal of Power Sources2012215: 63–68 

[20]

Qiao ZSha  OTang Z Y Yan JWang  S LLiu  H BXu  QSu Y J . Surface modification of LiNi0.5Mn1.5O4 by LiCoO2/Co3O4 composite for lithium-ion batteries. Materials Letters201287: 176–179 

[21]

Liu DTrottier  JCharest P Fréchette J Guerfi A Mauger A Julien C M Zaghib K . Effect of nano LiFePO4 coating on LiNi0.5Mn1.5O4 5 V cathode for lithium ion batteries. Journal of Power Sources2012204: 127–132 

[22]

Sachs MGellert  MChen M Drescher H J Kachel S R Zhou HZugermeier  MGorgoi M Roling B Gottfried J M . LiNi0.5Mn1.5O4 high-voltage cathode coated with Li4Ti5O12: a hard X-ray photoelectron spectroscopy (HAXPES) study. Physical Chemistry Chemical Physics201517(47): 31790–31800 

[23]

Zhang QJiang  WZhou Z Wang SGuo  XZhao S Ma G. Enhanced electrochemical performance of Li4SiO4–coated LiFePO4 prepared by sol–gel method and microwave heating. Solid State Ionics2012218: 31–34

[24]

Chatterjee SMaiti  RSaha S K Chakravorty D . Fast ion conduction in nanodimensional lithium silicate glasses. Journal of Physical Chemistry C2016120(1): 431–436

[25]

Xu M QLian  Q WWu  Y XMa  CTan P F Xia Q B Zhang J F Ivey D G Wei W F . Li+-conductive Li2SiO3 stabilized Li-rich layered oxide with an in situ formed spinel nano-coating layer: toward enhanced electrochemical performance for lithium-ion batteries. RSC Advances20166(41): 34245–34253

[26]

Feng X YShen  CFang X Chen C H . Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. Journal of Alloys and Compounds2011509(8): 3623–3626 

[27]

Xu Y HFeng  QKajiyoshi K Yanagisawa K . Hydrothermal intercalation reaction of nickel hydroxide into layered manganese oxides. Chemistry of Materials200214(2): 697–703

[28]

Ding B JFan  L WLin  Z YWu  Z GLv  DLu Z X . Preparation of magnetic core–shell Fe3O4@SiO2 and its characterization. Synthetic Materials Aging and Application20154: 44–47

[29]

Hong R YQian  J ZMiao  C CLi  H Z. Synthesis and surface modification of ZnO nanoparticles. Speciality Petrochemicals20052: 1–4

[30]

Wang H ZNakamura  HYao K Uehara M Nishimura S Maeda H Abe E. Effect of polyelectrolyte dispersants on the preparation of silica–coated zinc oxide particles in aqueous media. Journal of the American Ceramic Society200285(8): 1937–1940

[31]

Cui A LWang  T JJin  Y. TiO2 particle coating and structure analysis of surface coated with SiO2 and Al2O3. Engineering Chemistry & Metallugry199920(2): 178–181

[32]

Li J XLiu  SLuo F H . Methods and mechanism of inorganically coating nanometer TiO2. China Cermic Industry200512(1): 40–44

[33]

Zou JGao  J CWang  YLi Y D Wen M. Trial study on nanosize TiO2 coated by dense SiO2 film. Journal of Materials Science & Engineering200422(1): 71–73

[34]

Zhang G DGuan  Y PShan  G BTao  A ZLiu  H Z. Surface modification of Fe3O4 nano particles and its applications in preparation of magnetic alumina catalyst supports. Chinese Journal of Process Engineering20022(4): 319–324

[35]

Rimer J DLobo  R FVlachos  D G. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations. Langmuir200521(19): 8960–8971 

[36]

Wang H LTan  T AYang  PLai M O Lu L. High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. Journal of Physical Chemistry C2011115(13): 6102–6110

[37]

Yang SChen  JLiu Y Yi B. Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal-organic coordination-polymers as precursors. Journal of Materials Chemistry A, Materials for Energy and Sustainability20142(24): 9322–9330 

[38]

Zhuang Q CXu  S DQiu  X YCui  Y LFang  LSun S . Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries. Progressin Chemistry201022(6): 1044–1057

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (522KB)

5812

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/