A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application

Reza B. MOGHADDAM , Samaneh SHAHGALDI , Xianguo LI

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 245 -253.

PDF (362KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 245 -253. DOI: 10.1007/s11708-017-0492-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application

Author information +
History +
PDF (362KB)

Abstract

High activity catalyst with simple low-cost synthesis is essential for fuel cell commercialization. In this study, a facile procedure for the synthesis of cube-like Pt nanoparticle (PtCube) composites with high surface area carbon supports is developed by mixing precursor of Pt with carbon supports in organic batches, hence, one pot synthesis. The PtCube grow with Vulcan XC-72 or Ketjen black, respectively, and then treated for 5.5 h at 185ºC (i.e., PtCube5.5/V and PtCube5.5/K). The resulting particle sizes and shapes are similar; however, PtCube5.5/K has a larger electrochemical active surface area (EASA) and a remarkably better formic acid (FA) oxidation performance. Optimization of the PtCube/K composites leads to PtCube10/K that has been treated for 10 h at 185ºC. With a larger EASA, PtCube10/K is also more active in FA oxidation than the other PtCube/K composites. Impedance spectroscopy analysis of the temperature treated and as-prepared (i.e., untreated) PtCube/K composites indicates that PtCube10/K is less resistive, and has the highest limiting capacitance among the PtCube/K electrodes. Consistently, the voltammetric EASA is the largest for PtCube10/K. Furthermore, PtCube10/K is compared with two commercial Pt/C catalysts, Tanaka Kikinzoku Kogyo (TKK), and Johnson Matthey (JM)Pt/C catalysts. The TKK Pt/C has a higher EASA than PtCube10/K, as expected from their relative particles sizes (3–4 nm vs. 6–7 nm for PtCube10/K), however, PtCube10/K has a significantly better FA oxidation activity.

Keywords

synthesis / cube-like Pt / Pt/C composite / catalyst / impedance

Cite this article

Download citation ▾
Reza B. MOGHADDAM, Samaneh SHAHGALDI, Xianguo LI. A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application. Front. Energy, 2017, 11(3): 245-253 DOI:10.1007/s11708-017-0492-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LaMer V KDinegar  R H. Theory, Production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society195072(11): 4847–4854 

[2]

Pajonk G MRao  A VPinto  NEhrburger-Dolle F Gil M B . Monolithic carbon aerogels for fuel cell electrodes. In: Delmon P A J R M J A M P G B, Poncelet G. eds. Studies in Surface Science and Catalysis. Elsevier1998: 167–174

[3]

Wang CHou  YKim J Sun S. A general strategy for synthesizing fept nanowires and nanorods. Angewandte Chemie International Edition200746(33): 6333–6335 

[4]

Wang CDaimon  HOnodera T Koda TSun  S. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angewandte Chemie International Edition200847(19): 3588–3591

[5]

Antolini E. Composite materials: an emerging class of fuel cell catalyst supports. Applied Catalysis B: Environmental2010100(3–4): 413–426 

[6]

Lee Y WHan  S BKim  D YPark  K W. Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation. Chemical Communications201147(22): 6296–6298 

[7]

Du LShao  YSun J Yin GLiu  JWang Y . Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy201629: 314–322 

[8]

Fu KWang  YMao L Jin JYang  SLi G . Facile one-pot synthesis of graphene-porous carbon nanofibers hybrid support for Pt nanoparticles with high activity towards oxygen reduction. Electrochimica Acta2016215: 427–434 

[9]

Li QSun  S. Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy201629: 178–197 

[10]

Zhang J. Recent advances in cathode electrocatalysts for PEM fuel cells. Frontiers in Energy20115(2): 137–148 

[11]

Job NPereira  M F RLambert  SCabiac A Delahay G Colomer J F Marien J Figueiredo J L Pirard J P . Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. Journal of Catalysis2006240(2): 160–171

[12]

Antolini E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental200988(1–2): 1–24 

[13]

Antolini E. Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Applied Catalysis B: Environmental2016181: 298–313

[14]

Antolini E. Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renewable & Sustainable Energy Reviews201658: 34–51

[15]

Cherstiouk O V Simonov A N Moseva N S Cherepanova S V Simonov P A Zaikovskii V I Savinova E R . Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts. Electrochimica Acta201055(28): 8453–8460

[16]

Li DWang  CTripkovic D Sun SMarkovic  N MStamenkovic  V R. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catalysis20122(7): 1358–1362

[17]

Wang X MWang  M EZhou  D DXia  Y Y. Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation. Physical Chemistry Chemical Physics201113(30): 13594–13597

[18]

Antolini EGonzalez  E R. Polymer supports for low-temperature fuel cell catalysts. Applied Catalysis A, General2009365(1): 1–19

[19]

Moghaddam R B Ali O Y Javashi M Warburton P L Pickup P G . The effects of conducting polymers on formic acid oxidation at Pt nanoparticles. Electrochimica Acta2015162: 230–236 

[20]

Ochal PGomez de la Fuente  J LTsypkin  MSeland F Sunde S Muthuswamy N Rønning M Chen DGarcia  SAlayoglu S Eichhorn B . CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. Journal of Electroanalytical Chemistry2011655(2): 140–146 

[21]

Guo KWang  YChen H Ji JZhang  SKong J Liu B.An aptamer–SWNT biosensor for sensitive detection of protein via mediated signal transduction. Electrochemistry Communications201113(7): 707–710 

[22]

Alipour Moghadam Esfahani R Vankova S K Monteverde Videla A H A Specchia S . Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Applied Catalysis B: Environmental2017201: 419–429 

[23]

Su NHu  XZhang J Huang H Cheng J Yu JGe  C. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation. Applied Surface Science2017399: 403–410

[24]

Yuan QDuan  DMa Y Wei GZhang  ZHao X Liu S. Performance of nano-nickel core wrapped with Pt crystalline thin film for methanol electro-oxidation. Journal of Power Sources2014245: 886–891 

[25]

Wang Y JFang  BLi H Bi X T Wang H. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Progress in Materials Science201682: 445–498

[26]

Shahgaldi SHamelin  J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon201594: 705–728 

[27]

Prabakar S J R Kim YJeong  JJeong S Lah M S Pyo M. Graphite oxide as an efficient and robust support for Pt nanoparticles in electrocatalytic methanol oxidation. Electrochimica Acta2016188: 472–479

[28]

Luo MHong  YYao W Huang C Xu QWu  Q. Facile removal of polyvinylpyrrolidone (PVP) adsorbates from Pt alloy nanoparticles. Journal of Materials Chemistry A, Materials for Energy and Sustainability20153(6): 2770–2775

[29]

Niu ZLi  Y. Removal and utilization of capping agents in nanocatalysis. Chemistry of Materials201426(1): 72–83 

[30]

Biegler TRand  D A JWoods  R. Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorptionOriginal. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry197129(2): 269–277 

[31]

Trasatti SPetrii  O A. Real surface area measurements in electrochemistry. Journal of Electroanalytical Chemistry1992327(1-2): 353–376 

[32]

Reid O RSaleh  F SEaston  E B. Determining electrochemically active surface area in PEM fuel cell electrodes with electrochemical impedance spectroscopy and its application to catalyst durability. Electrochimica Acta2013114: 278–284

[33]

Wang WGuo  SLee I Ahmed K Zhong J Favors Z Zaera F Ozkan M Ozkan C S . Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Scientific Reports20144(1): 4452

[34]

Moghaddam R B Pickup P G . An electrochemical impedance study of thin polycarbazole films. Electrochimica Acta2014130: 577–582 

[35]

Wang Y JZhao  NFang B Li HBi  X TWang  H. Effect of different solvent ratio (ethylene glycol/water) on the preparation of Pt/C catalyst and its activity toward oxygen reduction reaction. RSC Advances20155(70): 56570–56577

[36]

Rice C ABauskar  APickup P G . Recent advances in electrocatalysis of formic acid oxidation. In: M. Shao (Ed.) Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach. London: Springer2013: 69–87

[37]

Rice CHa  SMasel R I Waszczuk P Wieckowski A Barnard T . Direct formic acid fuel cells. Journal of Power Sources2002111(1): 83–89 

[38]

Yu XPickup  P G. Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources2008182(1): 124–132

[39]

Brummer S BMakrides  A C. Adsorption and oxidation of formic acid on smooth platinum electrodes in perchloric acid solutions. Journal of Physical Chemistry196468(6): 1448–1459

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (362KB)

3577

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/