Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer
Jun HUANG, Zhe LI, Jianbo ZHANG
Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer
Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.
polymer electrolyte fuel cell / ultra-thin catalyst layer / electrostatic interactions / characterization and modeling / structure-property-performance relation / water management
[1] |
Litster S, Mclean G F. PEM fuel cell electrodes. Journal of Power Sources, 2004, 130(1–2): 61–76
CrossRef
Google scholar
|
[2] |
Weber A Z, Newman J. Modelling transport in polymer-electrolyte fuel cells. Chemical Reviews, 2004, 104(10): 4679–4726
CrossRef
Google scholar
|
[3] |
Eikerling M H, Malek K, Wang Q. Catalyst Layer Modelling: Structure, Properties and Performance, PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008: 381–446
|
[4] |
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
CrossRef
Google scholar
|
[5] |
Debe M K. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. Journal of the Electrochemical Society, 2013, 160(6): F522–F534
CrossRef
Google scholar
|
[6] |
Eikerling M, Kulikovsky A. Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation. Boca Raton: CRC Press, 2014
|
[7] |
Weber A Z, Borup R L, Darling R M, Das P K, Dursch T J, Gu W, Harvey D, Kusoglu A, Litster S, Mench M M, Mukundan R, Owejan J P, Pharoah J G, Secanell M, Zenyuk I V. A critical review of modelling transport phenomena in polymer-electrolyte fuel cells. Journal of the Electrochemical Society, 2014, 161(12): F1254–F1299
CrossRef
Google scholar
|
[8] |
Holdcroft S. Fuel cell catalyst layer: a polymer science perspective. Chemistry of Materials, 2014, 26(1): 381–393
CrossRef
Google scholar
|
[9] |
Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. Journal of Physical Chemistry Letters, 2016, 7(7): 1127–1137
CrossRef
Google scholar
|
[10] |
Zamel N. The catalyst layer and its dimensionality — a look into its ingredients and how to characterize their effects. Journal of Power Sources, 2016, 309: 141–159
CrossRef
Google scholar
|
[11] |
Uchida M, Park Y C, Kakinuma K, Yano H, Tryk D A, Kamino T, Uchida H, Watanabe M. Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells. Physical Chemistry Chemical Physics, 2013, 15(27): 11236–11247
CrossRef
Google scholar
|
[12] |
Park Y C, Tokiwa H, Kakinuma K, Watanabe M, Uchida M. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. Journal of Power Sources, 2016, 315: 179–191
CrossRef
Google scholar
|
[13] |
Bard A J, Inzelt G, Scholz F. Electrochemical Dictionary. London: Springer, 2008, 286
|
[14] |
Bard A J, Inzelt G, Scholz F. Electrochemical Dictionary. London: Springer, 2008, 523
|
[15] |
Perry M L, Fuller T F. A historical perspective of fuel cell technology in the 20th century. Journal of the Electrochemical Society, 2002, 149(7): S59–S67
CrossRef
Google scholar
|
[16] |
Ostwald F W. Scientific electrochemistry of today and technical electrochemistr of tomorrow. Z. fürElektrotechnik und Elektrochemie, 1894, 1: 122–125
|
[17] |
Office of Energy Efficiency and Renewable Energy. Fuel cell technologies office multi-year research, development, and demonstration plan. 2016, http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22
|
[18] |
Mond L, Langer C. A new form of gas battery. Proceedings of the Royal Society of London, 46:296–304
|
[19] |
Taitelbaum I, Tobler J. StudienüberBrennstoffketten. ZeitschriftFürElektrochemie Und AngewandtePhysikalische Chemie, 1910, 16(9): 286–300
|
[20] |
Rezaei Niya S M, Hoorfar M. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique – a review. Journal of Power Sources, 2013, 240(240): 281–293
CrossRef
Google scholar
|
[21] |
Stephens I E L, Bondarenko A S, Grønbjerg U, Rossmeisl J, Chorkendorff I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & Environmental Science, 2012, 5(5): 6744–6762
CrossRef
Google scholar
|
[22] |
Schoenbein C F. On the voltaic polarization of certain solid and fluid substances. Philosophical Magazine, 1838, 14(85): 43–45
|
[23] |
Grove W R. On voltaic series and the combination of gases by platinum. Philosophical Magazine, 1839, 14(86): 127–130
|
[24] |
Grove W R. On a gaseous voltaic battery. Journal of The Franklin Institute-engineering and Applied Mathematics, 1843, 35(4): 277–280
CrossRef
Google scholar
|
[25] |
Grubb J W T. Fuel cell. U.S. Patent 2, 913, 511. 1959-11-17
|
[26] |
Grubb W T, Niedrach L W. Batteries with solid ion-exchange membrane electrolytes II. Low-temperature hydrogen-oxygen fuel cells. Journal of the Electrochemical Society, 1960, 107(2): 131–135
CrossRef
Google scholar
|
[27] |
Niedrach L W, Alford H R. A new high-performance fuel cell employing conducting-porous-teflon electrodes and liquid electrolytes. Journal of the Electrochemical Society, 1965, 112(2): 117–124
CrossRef
Google scholar
|
[28] |
Appleby A J, Yeager E B. Solid polymer electrolyte fuel cells (SPEFCs). Energy, 1986, 11(1–2): 137–152
|
[29] |
Waters R F. Fuel cell electrode and process for its manufacture: U.S. Patent 3, 405, 007. 1968–10–8
|
[30] |
Petrow H G, Allen R J. Catalytic platinum metal particles on a substrate and method of preparing the catalyst. U.S. Patent 3, 992, 331. 1976–11–16
|
[31] |
Jalan V M, Bushnell C L. Method for producing highly dispersed catalytic platinum. U.S. Patent 4, 136, 059. 1979–1–23
|
[32] |
George M, Kemp F. Sequential catalyzation of fuel cell supported platinum catalyst. U.S. Patent 3, 857, 737. 1974–12–31
|
[33] |
Martin C R, Rhoades T A, Ferguson J A. Dissolution of perfluorinated ion-containing polymers. Analytical Chemistry, 1982, 54(9): 1639–1641
CrossRef
Google scholar
|
[34] |
Raistrick I D. Modified gas diffusion electrode for proton exchange membrane fuel cells. Proceedings of the symposium on diaphragms, separation, and ion-exchange membranes. Ponnington (NJ): Electrochemical Society. 1986: 6–7
|
[35] |
Wilson M S, Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry, 1992, 22(1): 1–7
CrossRef
Google scholar
|
[36] |
Wilson M S, Gottesfeld S. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1992, 139(2): L28–L30
CrossRef
Google scholar
|
[37] |
Kocha S S. Principles of MEA preparation. Handbook of Fuel Cells. New Jersey: Wiley 2010
|
[38] |
W.L. Gore and Associates, Inc. PRIMEA MEAs for Transportation, 2003
|
[39] |
Debe M K, Schmoeckel A K, Vernstrom G D, Atanasoski R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. Journal of Power Sources, 2006, 161(2): 1002–1011
CrossRef
Google scholar
|
[40] |
Fuel Cell System Cost – 2015, DOE Hydrogen and Fuel Cells Program Record. 2015
|
[41] |
Lee M, Uchida M, Yano H, Tryk D A, Uchida H, Watanabe M. New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions. Electrochimica Acta, 2010, 55(28): 8504–8512
CrossRef
Google scholar
|
[42] |
Borup R L, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
CrossRef
Google scholar
|
[43] |
Jahnke T, Futter G, Latz A, Malkow T, Papakonstantinou G, Tsotridis G, Schott P, Gérard M, Quinaud M, Quiroga M, Franco A A, Malek K, Calle-Vallejo F, Ferreira de Morais R, Kerber T, Sautet P, Loffreda D, Strahl S, Serra M, Polverino P, Pianese C, Mayur M, Bessler W G, Kompis C. Performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale. Journal of Power Sources, 2016, 304: 207–233
CrossRef
Google scholar
|
[44] |
Strong A, Thornberry C, Beattie S, Chen R, Coles S R. Depositing catalyst layers in polymer electrolyte membrane fuel cells: a review. Journal of Fuel Cell Science and Technology, 2015, 12(6): 064001
CrossRef
Google scholar
|
[45] |
Mauritz K A, Moore R B. State of Understanding of Nafion. Chemical Reviews, 2004, 104(10): 4535–4586
CrossRef
Google scholar
|
[46] |
Wee J, Lee K, Kim S H. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. Journal of Power Sources, 2007, 165(2): 667–677
CrossRef
Google scholar
|
[47] |
Soboleva T, Zhao X, Malek K, Xie Z, Navessin T, Holdcroft S. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Applied Materials & Interfaces, 2010, 2(2): 375–384
CrossRef
Google scholar
|
[48] |
Soboleva T, Malek K, Xie Z, Navessin T, Holdcroft S. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity. ACS Applied Materials & Interfaces, 2011, 3(6): 1827–1837
CrossRef
Google scholar
|
[49] |
Malek K, Eikerling M, Wang Q, Navessin T, Liu Z. Self-organization in catalyst layers of polymer electrolyte fuel cells. Journal of Physical Chemistry C, 2007, 111(36): 13627–13634
CrossRef
Google scholar
|
[50] |
Malek K, Mashio T, Eikerling M. Microstructure of catalyst layers in PEM fuel cells redefined: a computational approach. Electrocatalysis (New York), 2011, 2(2): 141–157
CrossRef
Google scholar
|
[51] |
Lopez-Haro M, Guétaz L, Printemps T, Morin A, Escribano S, Jouneau P-H, Bayle-Guillemaud P, Chandezon F, Gebel G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nature Communications, 2014
|
[52] |
Guetaz L, Lopez-Haro M, Escribano S, Morin A, Gebel G, Cullen D A, More K L, Borup R L. Catalyst-Layer Ionomer Imaging of Fuel Cells. ECS Transactions, 2015, 69(17): 455–464
CrossRef
Google scholar
|
[53] |
Boyer C, Gamburzev S, Velev O, Srinivasan S, Appleby A J. Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes. Electrochimica Acta, 1998, 43(24): 3703–3709
CrossRef
Google scholar
|
[54] |
Makharia R, Mathias M F, Baker D R. Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. Journal of the Electrochemical Society, 2005, 152(5): A970–A977
CrossRef
Google scholar
|
[55] |
Liu Y, Murphy M, Baker D R, Gu W, Ji C, Jorne J, Gasteiger H A. Determination of electrode sheet resistance in cathode catalyst layer by AC impedance. ECS Transactions, 2007, 11(1): 473– 484
|
[56] |
Liu Y, Ji C, Gu W, Baker D R, Jorne J, Gasteiger H A. Proton conduction in PEM fuel cell cathodes: effects of electrode thickness and ionomer equivalent weight. Journal of the Electrochemical Society, 2010, 157(8): B1154–B1162
CrossRef
Google scholar
|
[57] |
Iden H, Ohma A, Shinohara K. Analysis of proton transport in pseudo catalyst layers. Journal of the Electrochemical Society, 2009, 156(9): B1078–B1084
CrossRef
Google scholar
|
[58] |
Hess K C, Epting W K, Litster S. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells. Analytical Chemistry, 2011, 83(24): 9492–9498
CrossRef
Google scholar
|
[59] |
Karan K. Determination of CL Ionomer Conductivity. ECS Transactions, 2013, 50(2): 395–403
CrossRef
Google scholar
|
[60] |
Paul D K, Fraser A, Karan K. Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: conductivity of adsorbed Nafion films. Electrochemistry Communications, 2011, 13(8): 774–777
CrossRef
Google scholar
|
[61] |
Paul D K, McCreery R, Karan K. Proton transport property in supported Nafion nanothin films by electrochemical impedance spectroscopy. Journal of the Electrochemical Society, 2014, 161(14): F1395–F1402
CrossRef
Google scholar
|
[62] |
Ono Y, Nagao Y. Interfacial structure and proton conductivity of Nafion at the Pt-deposited surface. Langmuir, 2016, 32(1): 352–358
CrossRef
Google scholar
|
[63] |
Kusoglu A, Kwong A, Clark K T, Gunterman H P, Weber A Z. Water uptake of fuel-cell catalyst layers. Journal of the Electrochemical Society, 2012, 159(9): F530–F535
CrossRef
Google scholar
|
[64] |
Fukuyama Y, Shiomi T, Kotaka T, Tabuchi Y. The impact of platinum reduction on oxygen transport in proton exchange membrane fuel cells. Electrochimica Acta, 2014, 117: 367–378
CrossRef
Google scholar
|
[65] |
Suzuki T, Kudo K, Morimoto Y. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. Journal of Power Sources, 2013, 222: 379–389
CrossRef
Google scholar
|
[66] |
Owejan J P, Owejan J E, Gu W. Impact of platinum loading and catalyst layer structure on PEMFC performance. Journal of the Electrochemical Society, 2013, 160(8): F824–F833
CrossRef
Google scholar
|
[67] |
Liu H, Epting W K, Litster S. Gas transport resistance in polymer electrolyte thin films on oxygen reduction reaction catalysts. Langmuir, 2015, 31(36): 9853–9858
CrossRef
Google scholar
|
[68] |
Jinnouchi R, Kudo K, Kitano N, Morimoto Y. Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface. Electrochimica Acta, 2016, 188: 767–776
CrossRef
Google scholar
|
[69] |
Nonoyama N, Okazaki S, Weber A Z, Ikogi Y, Yoshida T. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. Journal of the Electrochemical Society, 2011, 158(4): B416
CrossRef
Google scholar
|
[70] |
Sabharwal M, Pant L M, Putz A, Susac D, Jankovic J, Secanell M. Analysis of catalyst layer microstructures: from imaging to performance. Fuel Cells (Weinheim), 2016, 16(6): 734–753
CrossRef
Google scholar
|
[71] |
Giner J, Hunter C. The Mechanism of operation of the Teflon-bonded gas diffusion electrode: a mathematical model. Journal of the Electrochemical Society, 1969, 116(8): 1124–1130
CrossRef
Google scholar
|
[72] |
Iczkowski R P, Cutlip M B. Voltage loss in fuel cell cathodes. Journal of the Electrochemical Society, 1980, 127(7): 1433–1440
CrossRef
Google scholar
|
[73] |
Ridge S J, White R E, Tsou Y. Oxygen reduction in a proton exchange membrane test cell. Journal of the Electrochemical Society, 1989, 136(7): 1902–1909
CrossRef
Google scholar
|
[74] |
Celiker H, Alsaleh M A, Gultekin S. A mathematical model for the performance of raney metal gas diffusion electrodes. Journal of the Electrochemical Society, 1991, 138(6): 1671–1681
CrossRef
Google scholar
|
[75] |
Broka K, Ekdunge P. Modelling the PEM fuel cell cathode. Journal of Applied Electrochemistry, 1997, 27(3): 281–289
CrossRef
Google scholar
|
[76] |
Ihonen J, Jaouen F, Lindbergh G, Lundblad A, Sundholm G. Investigation of mass-transport limitation in the solid polymer fuel cell cathode. Journal of the Electrochemical Society, 2002, 149(4): A448–A454
CrossRef
Google scholar
|
[77] |
Sun W, Peppley B A, Karan K. An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochimica Acta, 2005, 50(16–17): 3359–3374
CrossRef
Google scholar
|
[78] |
Kamarajugadda S, Mazumder S. Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance. Journal of Power Sources, 2008, 183(2): 629–642
CrossRef
Google scholar
|
[79] |
Siegel N P, Ellis M W, Nelson D J, von Spakovsky M R. Single domain PEMFC model based on agglomerate catalyst geometry. Journal of Power Sources, 2003, 115(1): 81–89
CrossRef
Google scholar
|
[80] |
Yin K M. Parametric study of proton-exchange-membrane fuel cell cathode using an agglomerate model. Journal of the Electrochemical Society, 2005, 152(3): A583–A593
CrossRef
Google scholar
|
[81] |
Secanell M, Songprakorp R, Suleman A, Djilali N. Multi-objective optimization of a polymer electrolyte fuel cell membrane electrode assembly. Energy & Environmental Science, 2008, 1(3): 378–388
CrossRef
Google scholar
|
[82] |
Secanell M, Karan K, Suleman A, Djilali N. Multivariable optimization of PEMFC cathodes using an agglomerate model. Electrochimica Acta, 2007, 52(22): 6318–6337
CrossRef
Google scholar
|
[83] |
Khajeh-Hosseini-Dalasm N, Fesanghary M, Fushinobu K, Okazaki K. A study of the agglomerate catalyst layer for the cathode side of a proton exchange membrane fuel cell: modelling and optimization. Electrochimica Acta, 2012, 60: 55–65
CrossRef
Google scholar
|
[84] |
Rao R M, Bhattacharyya D, Rengaswamy R, Choudhury S R. A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode. Journal of Power Sources, 2007, 173(1): 375–393
CrossRef
Google scholar
|
[85] |
Eikerling M. Water management in cathode catalyst layers of PEM fuel cells a structure-based model. Journal of the Electrochemical Society, 2006, 153(3): E58
CrossRef
Google scholar
|
[86] |
Liu J, Eikerling M. Model of cathode catalyst layers for polymer electrolyte fuel cells: the role of porous structure and water accumulation. Electrochimica Acta, 2008, 53(13): 4435–4446
CrossRef
Google scholar
|
[87] |
Jain P, Biegler L T, Jhon M S. Sensitivity of PEFC models to cathode layer microstructure. Journal of the Electrochemical Society, 2010, 157(8): B1222–B1229
CrossRef
Google scholar
|
[88] |
Epting W K, Litster S. Effects of an agglomerate size distribution on the PEFC agglomerate model. International Journal of Hydrogen Energy, 2012, 37(10): 8505–8511
CrossRef
Google scholar
|
[89] |
Cetinbas F C, Advani S G, Prasad A K. A modified agglomerate model with discrete catalyst particles for the PEM fuel cell catalyst layer. Journal of the Electrochemical Society, 2013, 160(8): F750–F756
CrossRef
Google scholar
|
[90] |
Wang Q, Eikerling M, Song D. Structure and performance of different types of agglomerates in cathode catalyst layer of PEM fuel cells. Journal of Electroanalytical Chemistry, 2004, 573(1): 61–69
|
[91] |
Xia Z, Wang Q, Eikerling M, Liu Z. Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells. Canadian Journal of Chemistry, 2008, 86(7): 657–667
CrossRef
Google scholar
|
[92] |
Sadeghi E, Putz A, Eikerling M. Hierarchical model of reaction rate distributions and effectiveness factors in catalyst layers of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2013, 160(10): F1159–F1169
CrossRef
Google scholar
|
[93] |
Sadeghi E, Putz A, Eikerling M. Effects of ionomer coverage on agglomerate effectiveness in catalyst layers of polymer electrolyte fuel cells. Journal of Solid State Electrochemistry, 2014, 18(5): 1271–1279
CrossRef
Google scholar
|
[94] |
Zenyuk I V, Litster S. Modelling ion conduction and electrochemical reactions in water films on thin-film metal electrodes with application to low temperature fuel cells. Electrochimica Acta, 2014, 146(10): 194–206
CrossRef
Google scholar
|
[95] |
Kotoi R, Inoue G, Kawase M. Reaction and mass transport simulation of polymer electrolyte fuel cell for the analysis of the key factors affecting the output performance in the catalyst layer. ECS Transactions, 2016, 75(14): 385–392
CrossRef
Google scholar
|
[96] |
Perry M L, Newman J, Cairns E J. Mass transport in gas-diffusion electrodes: a diagnostic tool for fuel-cell cathodes. Journal of the Electrochemical Society, 1998, 145(1): 5–15
CrossRef
Google scholar
|
[97] |
Lin G, He W, van Nguyen T. Modelling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell. Journal of the Electrochemical Society, 2004, 151(12): A1999–A2006
CrossRef
Google scholar
|
[98] |
Madhusudana Rao R, Rengaswamy R. Dynamic characteristics of spherical agglomerate for study of cathode catalyst layers in proton exchange membrane fuel cells (PEMFC). Journal of Power Sources, 2006, 158(1): 110–123
CrossRef
Google scholar
|
[99] |
Harvey D, Pharoah J G, Karan K. A comparison of different approaches to modelling the PEMFC catalyst layer. Journal of Power Sources, 2008, 179(1): 209–219
CrossRef
Google scholar
|
[100] |
Das P K, Li X, Liu Z S. A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells. Journal of Power Sources, 2008, 179(1): 186–199
CrossRef
Google scholar
|
[101] |
Ma S, Solterbeck C H, Odgaard M, Skou E. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents. Applied Physics A, Materials Science & Processing, 2009, 96(3): 581–589
CrossRef
Google scholar
|
[102] |
Yoon W, Weber A Z. Modelling low-platinum-loading effects in fuel-cell catalyst layers. Journal of the Electrochemical Society, 2011, 158(158): B1007–B1018
CrossRef
Google scholar
|
[103] |
Jomori S, Nonoyama N, Yoshida T. Analysis and modelling of PEMFC degradation: effect on oxygen transport. Journal of Power Sources, 2012, 215: 18–27
CrossRef
Google scholar
|
[104] |
Dobson P, Lei C, Navessin T, Secanell M. Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation. Journal of the Electrochemical Society, 2012, 159(5): B514–B523
CrossRef
Google scholar
|
[105] |
Cetinbas F C, Advani S G, Prasad A K. Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles. Journal of Power Sources, 2014, 250(3): 110–119
CrossRef
Google scholar
|
[106] |
Moore M, Wardlaw P, Dobson P, Boisvert J J, Putz A, Spiteri R J, Secanell M. Understanding the effect of kinetic and mass transport processes in cathode agglomerates. Journal of the Electrochemical Society, 2014, 161(8): E3125–E3137
CrossRef
Google scholar
|
[107] |
Hao L, Moriyama K, Gu W, Wang C Y. Modelling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells. Journal of the Electrochemical Society, 2015, 162(8): F854–F867
CrossRef
Google scholar
|
[108] |
Weber M F, Mamicheafara S, Dignam M J. Sputtered fuel cell electrodes. Journal of the Electrochemical Society, 1987, 134(6): 1416–1419
CrossRef
Google scholar
|
[109] |
O’Hayre R, Lee S J, Cha S, Prinz F B. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. Journal of Power Sources, 2002, 109(2): 483–493
CrossRef
Google scholar
|
[110] |
Bonakdarpour A, Stevens K, Vernstrom G D, Atanasoski R, Schmoeckel A K, Debe M K, Dahn J R. Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support. Electrochimica Acta, 2007, 53(2): 688–694
CrossRef
Google scholar
|
[111] |
Gasda M D, Teki R, Lu T M, Koratkar N, Eisman G A, Gall D. Sputter-deposited Pt PEM fuel cell electrodes: particles vs. layers. Journal of the Electrochemical Society, 2009, 156(5): B614–B619
CrossRef
Google scholar
|
[112] |
Cavarroc M, Ennadjaoui A, Mougenot M, Brault P, Escalier R, Tessier Y, Durand J, Roualdès S, Sauvage T, Coutanceau C. Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochemistry Communications, 2009, 11(4): 859–861
CrossRef
Google scholar
|
[113] |
Schwanitz B, Schulenburg H, Horisberger M, Wokaun A, Scherer G G. Stability of ultra-low Pt anodes for polymer electrolyte fuel cells prepared by magnetron sputtering. Electrocatalysis (New York), 2011, 2(1): 35–41
CrossRef
Google scholar
|
[114] |
Schwanitz B, Rabis A, Horisberger M, Scherer G G, Schmidt T J. Sputtered cathodes for polymer electrolyte fuel cells: insights into potentials, challenges and limitations. Chimia, 2012, 66(3): 110–119
CrossRef
Google scholar
|
[115] |
Mei W, Fukazawa T, Nakano Y, Akasaka Y, Naito K. Development of alternated catalyst layer structure for PEM fuel cells. ECS Transactions, 2013, 50(2): 1377–1384
CrossRef
Google scholar
|
[116] |
Mei W, Fukazawa T, Yang T, Yoshinaga N, Kanai Y. Application of modified-ACLS electrodes on low-platinum PEFCs. ECS Transactions, 2015, 69(17): 755–759
CrossRef
Google scholar
|
[117] |
Sievers G, Mueller S, Quade A, Steffen F, Jakubith S, Kruth A, Brueser V. Mesoporous Pt–Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering. Journal of Power Sources, 2014, 268: 255–260
CrossRef
Google scholar
|
[118] |
Çögenli M S, Mukerjee S, Yurtcan A B. Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition. Fuel Cells (Weinheim), 2015, 15(2): 288–297
CrossRef
Google scholar
|
[119] |
Stucki S, Menth A. Industrial water electrolysis. In: Srinivasan S, Salzano F J, Landgrebe A Reds. The Electrochemical Society Softbound Proceedings Series, Pennington, USA, 1978, 180–185
|
[120] |
McBreen J. Voltammetric studies of electrodes in contact with ionomeric membranes. Journal of the Electrochemical Society, 1985, 132(5): 1112–1116
CrossRef
Google scholar
|
[121] |
Tu W, Liu W, Cha C, Wu B L. Study of the powder/membrane interface by using the powder microelectrode technique I. The Pt-black/Nafion® interfaces. Electrochimica Acta, 1998, 43(24): 3731–3739
CrossRef
Google scholar
|
[122] |
Paulus U A, Veziridis Z, Schnyder B, Kuhnke M, Scherer G G, Wokaun A. Fundamental investigation of catalyst utilization at the electrode/solid polymer electrolyte interface: Part I. Development of a model system. Journal of Electroanalytical Chemistry, 2003, 541: 77–91
CrossRef
Google scholar
|
[123] |
Jiang J, Yi B. Thickness effects of a carbon-supported platinum catalyst layer on the electrochemical reduction of oxygen in sulfuric acid solution. Journal of Electroanalytical Chemistry, 2005, 577(1): 107–115
CrossRef
Google scholar
|
[124] |
Tominaka S, Wu C, Kuroda K, Osaka T. Electrochemical analysis of perpendicular mesoporous Pt electrode filled with pure water for clarifying the active region in fuel cell catalyst layers. Journal of Power Sources, 2010, 195(8): 2236–2240
CrossRef
Google scholar
|
[125] |
Thompson E L, Baker D. Proton conduction on ionomer-free Pt surfaces. ECS Transactions, 2011, 41(1): 709–720
|
[126] |
An S J, Litster S. In Situ, ionic conductivity measurement of ionomer/binder-free Pt catalyst under fuel cell operating condition. ECS Transactions, 2013, 58(1): 427–441
|
[127] |
Debe M K, Steinbach A J. An empirical model for the flooding behavior of ultra-thin PEM fuel cell electrodes. ECS Transactions, 2007, 11(1): 659–673
|
[128] |
Steinbach A J, Debe M K, Wong J. A new paradigm for PEMFC ultra-thin electrode water management at low temperatures. ECS Transactions, 2010, 33(1): 1179–1188
|
[129] |
Steinbach A J, Debe M K, Pejsa M J. Influence of anode GDL on PEMFC ultra-thin electrode water management at low temperatures. ECS Transactions, 2011, 41(1): 449–457
|
[130] |
Debe M K, Atanasoski R T, Steinbach A J. Nanostructured thin film electrocatalysts-current status and future potential. ECS Transactions, 2011, 41(1): 937–954
|
[131] |
Kongkanand A, Dioguardi M, Ji C, Thompson E L. Improving operational robustness of NSTF electrodes in PEM fuel cells. Journal of the Electrochemical Society, 2012, 159(8): F405– F411
CrossRef
Google scholar
|
[132] |
Sinha P K, Gu W, Kongkanand A, Thompson E. Performance of nano structured thin film (NSTF) electrodes under partially-humidified conditions. Journal of the Electrochemical Society, 2011, 158(7): B831–B840
CrossRef
Google scholar
|
[133] |
Kongkanand A, Owejan J E, Moose S, Dioguardi M, Biradar M, Makharia R. Development of dispersed-catalyst/NSTF hybrid electrode. Journal of the Electrochemical Society, 2012, 159(11): F676–F682
CrossRef
Google scholar
|
[134] |
Kongkanand A, Sinha P K. Load transients of nanostructured thin film electrodes in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2011, 158(6): B703–B711
CrossRef
Google scholar
|
[135] |
Chan K, Eikerling M. A pore-scale model of oxygen reduction in ionomer-free catalyst layers of PEFCs. Journal of the Electrochemical Society, 2011, 158(1): B18–B28
CrossRef
Google scholar
|
[136] |
Petrii O A. Zero charge potentials of platinum metals and electron work functions. Russian Journal of Electrochemistry, 2013, 49(5): 401–422
CrossRef
Google scholar
|
[137] |
Zenyuk I V, Litster S. Modelling ion conduction and electrochemical reactions in water films on thin-film metal electrodes with application to low temperature fuel cells. Electrochimica Acta, 2014, 146: 194–206
CrossRef
Google scholar
|
[138] |
Frumkin A N, Petrii O A. Potentials of zero total and zero free charge of platinum group metals. Electrochimica Acta, 1975, 20(5): 347–359
CrossRef
Google scholar
|
[139] |
Garcia-Araez N, Climent V, Feliu J M. Potential-dependent water orientation on Pt(111), Pt(100), and Pt(110), as inferred from laser-pulsed experiments. electrostatic and chemical effects. Journal of Physical Chemistry C, 2009, 113(21): 9290–9304
CrossRef
Google scholar
|
[140] |
Huang J, Malek A, Zhang J, Eikerling M H. Non-monotonic surface charging behavior of platinum: a paradigm change. Journal of Physical Chemistry C, 2016, 120(25): 13587–13595
CrossRef
Google scholar
|
[141] |
Huang J, Zhang J, Eikerling M. Theory of electrostatic phenomena in water-filled Pt nanopores. Faraday Discussions, 2016, 193: 427–446
CrossRef
Google scholar
|
[142] |
Huang J, Zhang J, Eikerling M H. Particle proximity effect in nanoparticle electrocatalysis: surface charging and electrostatic interactions. Journal of Physical Chemistry C, 2017, 121(9): 4806–4815
CrossRef
Google scholar
|
[143] |
Das P K, Weber A Z. Water management in PEMFC with ultra-thin catalyst-layers. ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2013
|
[144] |
Das P K, Santamaria A D, Weber A Z. Role of GDL surface wettability and operating conditions in liquid-water removal from NSTF catalyst layers. ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014
|
[145] |
Zenyuk I V, Das P K, Weber A Z. Understanding impacts of catalyst-layer thickness on fuel-cell performance via mathematical modelling. Journal of the Electrochemical Society, 2016, 163(7): F691–F703
CrossRef
Google scholar
|
[146] |
Chan K, Eikerling M. Water balance model for polymer electrolyte fuel cells with ultrathin catalyst layers. Physical Chemistry Chemical Physics, 2014, 16(5): 2106–2117
CrossRef
Google scholar
|
[147] |
Furuya Y, Iden H, Mashio T, Ohma A, Shinohara K. Effect of ionomer coverage on Pt-based catalyst on ORR activity. The Electrochemical Society, 2012 (40): 1522–1522
|
[148] |
Modestov A D, Kapustin A V, Avakov V B, Landgraf I K, Tarasevich M R. Cathode catalyst layers with ionomer to carbon mass ratios in the range 0–2 studied by electrochemical impedance spectroscopy, cyclic voltammetry, and performance measurements. Journal of Power Sources, 2014, 272: 735–742
CrossRef
Google scholar
|
[149] |
Dong B, Gwee L, Salas-de La Cruz D, Winey K I, Elabd Y A. Super proton conductive high-purity Nafion nanofibers. Nano Letters, 2010, 10(9): 3785–3790
CrossRef
Google scholar
|
[150] |
Nouri-Khorasani A, Malek K, Malek A, Mashio T, Wilkinson D P, Eikerling M H. Molecular modelling of the proton density distribution in a water-filled slab-like nanopore bounded by Pt oxide and ionomer. Catalysis Today, 2016, 262: 133–140
CrossRef
Google scholar
|
[151] |
Eslamibidgoli M J, Huang J, Kadyk T, Malek A, Eikerling M. How theory and simulation can drive fuel cell electrocatalysis. Nano Energy, 2016, 29: 334–361
CrossRef
Google scholar
|
[152] |
Muzaffar T, Kadyk T, Eikerling M. Physical modelling of the proton density in nanopores of PEM fuel cells catalyst layers. Electrochimica Acta, 2017, 245: 1048–1058
CrossRef
Google scholar
|
/
〈 | 〉 |