Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN

PDF(395 KB)
PDF(395 KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 326-333. DOI: 10.1007/s11708-017-0489-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Author information +
History +

Abstract

In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit voltage (OCV), idling, rated output, overload, idling-rated cycle, idling-overload cycle, and OCV-idling cycle. The experimental results indicate that the proposed method can effectively destroy the MEA in a short time (165 h). Moreover, the degradation mechanism of MEA was analyzed by measuring the polarization curve, CV, SEM and TEM. This paper may provide a new research direction for improving the durability of fuel cell.

Keywords

polymer electrolyte membrane fuel cell / accelerated life-time test / load cycling test / durability

Cite this article

Download citation ▾
Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell. Front. Energy, 2017, 11(3): 326‒333 https://doi.org/10.1007/s11708-017-0489-z

References

[1]
Steele B C, Heinzel  A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
CrossRef Google scholar
[2]
Winter M, Brodd  R J. What are batteries, fuel cells, and supercapacitors? ChemInform, 2004, 104(10): 4245
[3]
Borup R, Meyers  J, Pivovar B ,  Kim Y S ,  Mukundan R ,  Garland N ,  Myers D ,  Wilson M ,  Garzon F ,  Wood D, Zelenay  P, More K ,  Stroh K ,  Zawodzinski T ,  Boncella J ,  McGrath J E ,  Inaba M ,  Miyatake K ,  Hori M, Ota  K, Ogumi Z ,  Miyata S ,  Nishikata A ,  Siroma Z ,  Uchimoto Y ,  Yasuda K ,  Kimijima K ,  Iwashita N . Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
CrossRef Google scholar
[4]
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
CrossRef Google scholar
[5]
Wu J, Yuan  X Z, Martin  J J, Wang  H, Zhang J ,  Shen J, Wu  S, Merida W . A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008, 184(1): 104–119
CrossRef Google scholar
[6]
Bar-On I, Kirchain  R, Roth R . Technical cost analysis for PEM fuel cells. Journal of Power Sources, 2002, 109(1): 71–75
CrossRef Google scholar
[7]
Arlt T, Manke  I, Wippermann K ,  Riesemeier H ,  Mergel J ,  Banhart J . Investigation of the local catalyst distribution in an aged direct methanol fuel cell MEA by means of differential synchrotron X-ray absorption edge imaging with high energy resolution. Journal of Power Sources, 2013, 221(1): 210–216
CrossRef Google scholar
[8]
Liu W, Ruth  K, Rusch G . Membrane durability in PEM fuel cells. Journal of New Materials for Electrochemical Systems, 2001, 4(4): 227–232
[9]
Galbiati S, Baricci  A, Casalegno A ,  Marchesi R . Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. International Journal of Hydrogen Energy,  2013,  38(15): 6469–6480
[10]
Bao J, Krishnan  G N, Jayaweera  P, Perez-Mariano J ,  Sanjurjo A . Effect of various coal contaminants on the performance of solid oxide fuel cells: Part I. Accelerated testing. Journal of Power Sources, 2009, 193(2): 607–616
CrossRef Google scholar
[11]
Zhang S, Yuan  X, Wang H ,  Merida W ,  Zhu H, Shen  J, Wu S ,  Zhang J . A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy,  2009,  34(1): 388–404
[12]
Panha K, Fowler  M, Yuan X Z ,  Wang H. Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells. Applied Energy,  2012,  93(5): 90–97
[13]
Aindow T T, O’Neill  J. Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling. Journal of Power Sources,   2011,  196(8): 3851–3854
[14]
Kundu S, Fowler  M, Simon L C ,  Abouatallah R . Reversible and irreversible degradation in fuel cells during open circuit voltage durability testing. Journal of Power Sources,  2008,  182(1): 254–258
[15]
Rong F, Huang  C, Liu Z S ,  Song D, Wang  Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling: part II. simulation and understanding. Journal of Power Sources,  2008,  175(2): 712–723
[16]
Avakov V B, Aliev  A D, Beketaeva  L A, Bogdanovskaya  V A, Burkovskii  E V, Datskevich  A A, Ivanitskii  B A, Kazanskii  L P, Kapustin  A V, Korchagin  O V, Kuzov  A V, Landgraf  I K, Lozovaya  O V, Modestov  A D, Stankevich  M M, Tarasevich  M R, Chalykh  A E. Study of degradation of membrane-electrode assemblies of hydrogen-oxygen (air) fuel cell under the conditions of life tests and voltage cycling. Russian Journal of Electrochemistry, 2014,  50(8): 773–788
[17]
Solasi R, Zou  Y, Huang X ,  Reifsnider K ,  Condit D . On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. Journal of Power Sources, 2007, 167(2): 366–377
CrossRef Google scholar
[18]
Oszcipok M, Riemann  D, Kronenwett U ,  Kreideweis M ,  Zedda A . Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells. Journal of Power Sources, 2005, 145(2): 407–415
CrossRef Google scholar
[19]
Nishikawa H, Sasou  H, Kurihara R ,  Nakamura S ,  Kano A, Tanaka  K, Aoki T ,  Ogami Y . High fuel utilization operation of pure hydrogen fuel cells. International Journal of Hydrogen Energy, 2008, 33(21): 6262–6269
CrossRef Google scholar
[20]
Ettingshausen F, Kleemann  J, Marcu A ,  Toth G, Fuess  H, Roth C . Dissolution and migration of platinum in PEMFCs investigated for start/stop cycling and high potential degradation. Fuel Cells (Weinheim), 2011, 11(2): 238–245
CrossRef Google scholar
[21]
Manasilp A, Gulari  E. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Applied Catalysis B: Environmental, 2002, 37(1): 17–25
CrossRef Google scholar

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (Program No. 2016YFB0101205).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(395 KB)

Accesses

Citations

Detail

Sections
Recommended

/