High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage

Xiaoqiang SHAN, Fenghua GUO, Wenqian XU, Xiaowei TENG

PDF(1290 KB)
PDF(1290 KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 383-400. DOI: 10.1007/s11708-017-0485-3
RESEARCH ARTICLE
RESEARCH ARTICLE

High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage

Author information +
History +

Abstract

Developing electrodes with high specific energy by using inexpensive manganese oxides is of great importance for aqueous electrochemical energy storage (EES) using non-Li charge carriers such as Na-or K-ions. However, the energy density of aqueous EES devices is generally limited by their narrow thermodynamic potential window (~1.23 V). In this paper, the synthesis of high purity layered Mn5O8 nanoparticles through solid state thermal treatment of Mn3O4 spinel nanoparticles, resulting in a chemical formula of [Mn2+2 ][Mn4+3 O82−], evidenced by Rietveld refinement of synchrotron-based X-ray diffraction, has been reported. The electro-kinetic analyses obtained from cyclic voltammetry measurements in half-cells have demonstrated that Mn5O8 electrode has a large overpotential (~ 0.6 V) towards gas evolution reactions, resulting in a stable potential window of 2.5 V in an aqueous electrolyte in half-cell measurements. Symmetric full-cells fabricated using Mn5O8 electrodes can be operated within a stable 3.0 V potential window for 5000 galvanostatic cycles, exhibiting a stable electrode capacity of about 103 mAh/g at a C-rate of 95 with nearly 100% coulombic efficiency and 96% energy efficiency.

Keywords

manganese oxides Mn5O8 / high voltage / aqueous Na-ion storage

Cite this article

Download citation ▾
Xiaoqiang SHAN, Fenghua GUO, Wenqian XU, Xiaowei TENG. High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Front. Energy, 2017, 11(3): 383‒400 https://doi.org/10.1007/s11708-017-0485-3

References

[1]
Chu S, Cui  Y, Liu N . The path towards sustainable energy. Nature Materials, 2016, 16(1): 16–22
CrossRef Google scholar
[2]
Grey C P, Tarascon  J M. Sustainability and in situ monitoring in battery development. Nature Materials, 2016, 16(1): 45–56
CrossRef Google scholar
[3]
Kim S W, Seo  D H, Ma  X, Ceder G ,  Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721
CrossRef Google scholar
[4]
Ma X, Chen  H, Ceder G . Electrochemical properties of monoclinic NaMnO2. Journal of the Electrochemical Society, 2011, 158(12): A1307–A1312
CrossRef Google scholar
[5]
Sauvage F, Laffont  L, Tarascon J M ,  Baudrin E . Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorganic Chemistry, 2007, 46(8): 3289–3294
CrossRef Google scholar
[6]
Whitacre J F, Tevar  A, Sharma S . Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochemistry Communications, 2010, 12(3): 463–466
CrossRef Google scholar
[7]
Suo L M, Borodin  O, Gao T ,  Olguin M ,  Ho J, Fan  X L, Luo  C, Wang C S ,  Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350(6263): 938–943
CrossRef Google scholar
[8]
Xu K, Wang  C S. Batteries: widening voltage windows. Nature Energy, 2016, 1: 16161
[9]
Shan X, Charles  D S, Lei  Y, Qiao R ,  Wang G, Yang  W, Feygenson M ,  Su D, Teng  X. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7: 13370
CrossRef Google scholar
[10]
Toby B H, Von Dreele  R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 2013, 46(2): 544–549
CrossRef Google scholar
[11]
Oswald H R, Feitknecht  W, Wampetich M J . Crystal data of Mn5O8 and Cd2Mn3O8. Nature, 1965, 207(4992): 72
CrossRef Google scholar
[12]
Gao T, Norby  P, Krumeich F ,  Okamoto H ,  Nesper R ,  Fjellvag H . Synthesis and properties of layered-structured Mn5O8 nanorods. Journal of Physical Chemistry C, 2010, 114(2): 922–928
CrossRef Google scholar
[13]
Yeager M P, Du  W, Wang Q ,  Deskins N A ,  Sullivan M ,  Bishop B ,  Su D, Xu  W, Senanayake S D ,  Si R, Hanson  J, Teng X . Pseudocapacitive hausmannite nanoparticles with (101) facets: synthesis, characterization, and charge-transfer mechanism. ChemSusChem, 2013, 6(10): 1983–1992
CrossRef Google scholar
[14]
Dhaouadi H, Ghodbane  O, Hosni F ,  Touati F . Nanoparticles: synthesis, characterization, and dielectric properties. ISRN Spectroscopy, 2012, 67(4): 1152–1153
[15]
Augustyn V, Come  J, Lowe M A ,  Kim J W ,  Taberna P L ,  Tolbert S H ,  Abruña H D ,  Simon P ,  Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12(6): 518–522
CrossRef Google scholar
[16]
Jung S-K, Kim  H, Cho M G ,  Cho S-P ,  Lee B, Kim  H, Park Y-U ,  Hong J, Park  K-Y, Yoon G ,  Seong W M ,  Cho Y, Oh  M H, Kim  H, Gwon H ,  HwangI, Hyeon  T, Yoon W-S ,  Kang K. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy,2017, 2, 16208
[17]
Lindström H, Södergren  S, Solbrand A ,  Rensmo H ,  Hjelm J ,  Hagfeldt A ,  Lindquist S E . Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. Journal of Physical Chemistry B, 1997, 101(39): 7717–7722
CrossRef Google scholar
[18]
Kang B, Ceder  G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458(7235): 190–193
CrossRef Google scholar
[19]
Yu X W, Manthiram  A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chemistry of Materials, 2016, 28(3): 896–905
CrossRef Google scholar
[20]
Zheng J M, Yan  P F, Kan  W H, Wang  C M, Manthiram  A. A spinel-integrated P2-type layered composite: high-rate cathode for sodium-ion batteries. Journal of the Electrochemical Society, 2016, 163(3): A584–A591
CrossRef Google scholar
[21]
Burke A. The present and projected performance and cost of double-layer and pseudo-capacitive ultracapacitors for hybrid vehicle applications. In: 2005 IEEE Vehicle Power and Propulsion Conference Chicago, 2005, 356–366
[22]
Nagasubramanian G, Jungst  R G, Doughty  D H. Impedance, power, energy, and pulse performance characteristics of small commercial Li-ion cells. Journal of Power Sources, 1999, 83(1–2): 193–203
CrossRef Google scholar
[23]
Li Z, Young  D, Xiang K ,  Carter W C ,  Chiang Y M . Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Advanced Energy Materials, 2013, 3(3): 290–294
CrossRef Google scholar
[24]
Chen Z, Augustyn  V, Jia X L ,  Xiao Q F ,  Dunn B, Lu  Y F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano, 2012, 6(5): 4319–4327
CrossRef Google scholar
[25]
Wang X L, Li  G, Chen Z ,  Augustyn V ,  Ma X M ,  Wang G, Dunn  B, Lu Y F . High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Advanced Energy Materials, 2011, 1(6): 1089–1093
CrossRef Google scholar
[26]
Nesbitt H W, Banerjee  D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 1998, 83(3-4): 305–315
CrossRef Google scholar
[27]
Zhuang Z, Sheng  W, Yan Y . Synthesis of monodispere Au@Co3O4core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Advanced Materials, 2014, 26(23): 3950–3955
CrossRef Google scholar
[28]
Jeong D, Jin  K, Jerng S E ,  Seo H, Kim  D, Nahm S H ,  Kim S H ,  Nam K T . Mn5O8 nanoparticles as efficient water oxidation catalysts at neutral pH. ACS Catalysis, 2015, 5(8): 4624–4628
CrossRef Google scholar
[29]
Takashima T, Hashimoto  K, Nakamura R . Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. Journal of the American Chemical Society, 2012, 134(3): 1519–1527
CrossRef Google scholar
[30]
Takashima T, Hashimoto  K, Nakamura R . Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. Journal of the American Chemical Society, 2012, 134(44): 18153–18156
CrossRef Google scholar

Acknowledgements

This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award # DE-SC0010286 (XS, FG, XT). This research used resources of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1290 KB)

Accesses

Citations

Detail

Sections
Recommended

/