High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage

Xiaoqiang SHAN , Fenghua GUO , Wenqian XU , Xiaowei TENG

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 383 -400.

PDF (1290KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 383 -400. DOI: 10.1007/s11708-017-0485-3
RESEARCH ARTICLE
RESEARCH ARTICLE

High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage

Author information +
History +
PDF (1290KB)

Abstract

Developing electrodes with high specific energy by using inexpensive manganese oxides is of great importance for aqueous electrochemical energy storage (EES) using non-Li charge carriers such as Na-or K-ions. However, the energy density of aqueous EES devices is generally limited by their narrow thermodynamic potential window (~1.23 V). In this paper, the synthesis of high purity layered Mn5O8 nanoparticles through solid state thermal treatment of Mn3O4 spinel nanoparticles, resulting in a chemical formula of [Mn2+2 ][Mn4+3 O82−], evidenced by Rietveld refinement of synchrotron-based X-ray diffraction, has been reported. The electro-kinetic analyses obtained from cyclic voltammetry measurements in half-cells have demonstrated that Mn5O8 electrode has a large overpotential (~ 0.6 V) towards gas evolution reactions, resulting in a stable potential window of 2.5 V in an aqueous electrolyte in half-cell measurements. Symmetric full-cells fabricated using Mn5O8 electrodes can be operated within a stable 3.0 V potential window for 5000 galvanostatic cycles, exhibiting a stable electrode capacity of about 103 mAh/g at a C-rate of 95 with nearly 100% coulombic efficiency and 96% energy efficiency.

Keywords

manganese oxides Mn5O8 / high voltage / aqueous Na-ion storage

Cite this article

Download citation ▾
Xiaoqiang SHAN, Fenghua GUO, Wenqian XU, Xiaowei TENG. High purity Mn5O8nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Front. Energy, 2017, 11(3): 383-400 DOI:10.1007/s11708-017-0485-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu SCui  YLiu N . The path towards sustainable energy. Nature Materials201616(1): 16–22

[2]

Grey C PTarascon  J M. Sustainability and in situ monitoring in battery development. Nature Materials201616(1): 45–56

[3]

Kim S WSeo  D HMa  XCeder G Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials20122(7): 710–721

[4]

Ma XChen  HCeder G . Electrochemical properties of monoclinic NaMnO2. Journal of the Electrochemical Society2011158(12): A1307–A1312

[5]

Sauvage FLaffont  LTarascon J M Baudrin E . Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorganic Chemistry200746(8): 3289–3294

[6]

Whitacre J FTevar  ASharma S . Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochemistry Communications201012(3): 463–466

[7]

Suo L MBorodin  OGao T Olguin M Ho JFan  X LLuo  CWang C S Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science2015350(6263): 938–943

[8]

Xu KWang  C S. Batteries: widening voltage windows. Nature Energy, 20161: 16161

[9]

Shan XCharles  D SLei  YQiao R Wang GYang  WFeygenson M Su DTeng  X. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications20167: 13370

[10]

Toby B HVon Dreele  R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography201346(2): 544–549

[11]

Oswald H RFeitknecht  WWampetich M J . Crystal data of Mn5O8 and Cd2Mn3O8. Nature1965207(4992): 72

[12]

Gao TNorby  PKrumeich F Okamoto H Nesper R Fjellvag H . Synthesis and properties of layered-structured Mn5O8 nanorods. Journal of Physical Chemistry C2010114(2): 922–928

[13]

Yeager M PDu  WWang Q Deskins N A Sullivan M Bishop B Su DXu  WSenanayake S D Si RHanson  JTeng X . Pseudocapacitive hausmannite nanoparticles with (101) facets: synthesis, characterization, and charge-transfer mechanism. ChemSusChem20136(10): 1983–1992

[14]

Dhaouadi HGhodbane  OHosni F Touati F . Nanoparticles: synthesis, characterization, and dielectric properties. ISRN Spectroscopy201267(4): 1152–1153

[15]

Augustyn VCome  JLowe M A Kim J W Taberna P L Tolbert S H Abruña H D Simon P Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials201312(6): 518–522

[16]

Jung S-KKim  HCho M G Cho S-P Lee BKim  HPark Y-U Hong JPark  K-YYoon G Seong W M Cho YOh  M HKim  HGwon H HwangIHyeon  TYoon W-S Kang K. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy,20172, 16208

[17]

Lindström HSödergren  SSolbrand A Rensmo H Hjelm J Hagfeldt A Lindquist S E . Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. Journal of Physical Chemistry B1997101(39): 7717–7722

[18]

Kang BCeder  G. Battery materials for ultrafast charging and discharging. Nature2009458(7235): 190–193

[19]

Yu X WManthiram  A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chemistry of Materials201628(3): 896–905

[20]

Zheng J MYan  P FKan  W HWang  C MManthiram  A. A spinel-integrated P2-type layered composite: high-rate cathode for sodium-ion batteries. Journal of the Electrochemical Society2016163(3): A584–A591

[21]

Burke A. The present and projected performance and cost of double-layer and pseudo-capacitive ultracapacitors for hybrid vehicle applications. In: 2005 IEEE Vehicle Power and Propulsion Conference Chicago2005, 356–366

[22]

Nagasubramanian GJungst  R GDoughty  D H. Impedance, power, energy, and pulse performance characteristics of small commercial Li-ion cells. Journal of Power Sources199983(1–2): 193–203

[23]

Li ZYoung  DXiang K Carter W C Chiang Y M . Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Advanced Energy Materials20133(3): 290–294

[24]

Chen ZAugustyn  VJia X L Xiao Q F Dunn BLu  Y F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano20126(5): 4319–4327

[25]

Wang X LLi  GChen Z Augustyn V Ma X M Wang GDunn  BLu Y F . High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Advanced Energy Materials20111(6): 1089–1093

[26]

Nesbitt H WBanerjee  D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist199883(3-4): 305–315

[27]

Zhuang ZSheng  WYan Y . Synthesis of monodispere Au@Co3O4core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Advanced Materials201426(23): 3950–3955

[28]

Jeong DJin  KJerng S E Seo HKim  DNahm S H Kim S H Nam K T . Mn5O8 nanoparticles as efficient water oxidation catalysts at neutral pH. ACS Catalysis20155(8): 4624–4628

[29]

Takashima THashimoto  KNakamura R . Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. Journal of the American Chemical Society2012134(3): 1519–1527

[30]

Takashima THashimoto  KNakamura R . Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. Journal of the American Chemical Society2012134(44): 18153–18156

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1290KB)

2852

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/