Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

PDF(705 KB)
PDF(705 KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 286-298. DOI: 10.1007/s11708-017-0477-3
REVIEW ARTICLE
REVIEW ARTICLE

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Author information +
History +

Abstract

To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

Keywords

oxygen reduction / fuel cells / cathode / nonprecious metal catalysts / carbon nanocomposites

Cite this article

Download citation ▾
Gang WU. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Front. Energy, 2017, 11(3): 286‒298 https://doi.org/10.1007/s11708-017-0477-3

References

[1]
CheG, Lakshmi B B, FisherE R , MartinC R. Carbon nanotubule membranes for electrochemical energy storage and production.Nature, 1998, 393(6683): 346–349
CrossRef Google scholar
[2]
YangZ, ZhangJ, Kintner-MeyerM C , LuX, ChoiD, LemmonJ P, Liu J. Electrochemical energy storage for green grid.Chemical Reviews, 2011, 111(5): 3577–361
CrossRef Google scholar
[3]
RabisA, Rodriguez P, SchmidtT J . Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges.ACS Catalysis, 2012, 2(5): 864–890
CrossRef Google scholar
[4]
DebeM K. Electrocatalyst approaches and challenges for automotive fuel cells.Nature, 2012, 486(7401): 43–51
CrossRef Google scholar
[5]
ShaoM, ChangQ, DodeletJ P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction.Chemical Reviews, 2016, 116(6): 3594–3657
CrossRef Google scholar
[6]
JaouenF, Proietti E, LefevreM , ChenitzR, Dodelet J P, WuG , ChungH T, Johnston C M, ZelenayP . Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells.Energy & Environmental Science, 2011, 4(1): 114–130
CrossRef Google scholar
[7]
ShaoY, ParkS, XiaoJ, Zhang J G, WangY , LiuJ. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective.ACS Catalysis, 2012, 2(5): 844–857
CrossRef Google scholar
[8]
BlackR, LeeJ H, AdamsB, Mims C A, NazarL F . The role of catalysts and peroxide oxidation in lithium-oxygen batteries.Angewandte Chemie International Edition, 2013, 52(1): 392–396
CrossRef Google scholar
[9]
WuG, MoreK L, JohnstonC M , ZelenayP. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt.Science, 2011, 332(6028): 443–447
CrossRef Google scholar
[10]
SuntivichJ, MayK J, GasteigerH A , GoodenoughJ B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.Science, 2011, 334(6061): 1383–1385
CrossRef Google scholar
[11]
LefèvreM, Proietti E, JaouenF , DodeletJ P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells.Science, 2009, 324(5923): 71–74
CrossRef Google scholar
[12]
GongK, DuF, XiaZ, Durstock M, DaiL . Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.Science, 2009, 323(5915): 760–764
CrossRef Google scholar
[13]
BashyamR, Zelenay P. A class of non-precious metal composite catalysts for fuel cells.Nature, 2006, 443(7107): 63–66
CrossRef Google scholar
[14]
WuG, Santandreu A, KelloggW , GuptaS, OgokeO, ZhangH, Wang H L, DaiL . Carbon Nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition.Nano Energy, 2016, 29: 83–110
CrossRef Google scholar
[15]
RabisA, Rodriguez P, SchmidtT J . Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges.ACS Catalysis, 2012, 2(5): 864–890
CrossRef Google scholar
[16]
OsgoodH, Devaguptapu S V, XuH , ChoJ P, WuG. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media.Nano Today, 2016, 11(5): 601–625
CrossRef Google scholar
[17]
GuptaS, QiaoL, ZhaoS, Xu H, LinY , DevaguptapuS V, WangX, SwihartM T, Wu G. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution.Advanced Energy Materials, 2016, 6(22): 1601198
CrossRef Google scholar
[18]
GuptaS, Kellogg W, XuH , LiuX, ChoJ, WuG. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media.Chemistry, an Asian Journal, 2016, 11(1): 10–21
CrossRef Google scholar
[19]
ChenC F, KingG, DickersonR M , PapinP A, GuptaS, KelloggW R, Wu G. Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst.Nano Energy, 2015, 13: 423–432
CrossRef Google scholar
[20]
WangX, KeY, PanH, Ma K, XiaoQ , YinD, WuG, SwihartM T. Cu-deficient plasmonic Cu2-xS nanoplate electrocatalysts for oxygen reduction.ACS Catalysis, 2015, 5(4): 2534–2540
CrossRef Google scholar
[21]
JaouenF, Proietti E, LefèvreM , ChenitzR, Dodelet J P, WuG , ChungH T, Johnston C M, ZelenayP . Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells.Energy & Environmental Science, 2011, 4(1): 114–130
CrossRef Google scholar
[22]
WuG, NelsonM A, MackN H, Ma S G, SekharP , GarzonF H, Zelenay P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst.Chemical Communications (Cambridge), 2010, 46(40): 7489–7491
CrossRef Google scholar
[23]
LiQ, XuP, GaoW, Ma S G, ZhangG Q , CaoR G, ChoJ, WangH L, Wu G. Graphene/graphene tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries.Advanced Materials, 2014, 26(9): 1378–1386
CrossRef Google scholar
[24]
LiQ, CaoR, ChoJ, Wu G. Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage.Advanced Energy Materials, 2014, 4(6): 1301415
CrossRef Google scholar
[25]
WuG, ChungH T, NelsonM, Artyushkova K, MoreK L , JohnstonC M, Zelenay P. Graphene-enriched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media.ECS Transactions, 2011, 4(1): 1709–1717
[26]
WuG, MoreK L, XuP, WangH L, FerrandonM, Kropf A J, MyersD J , MaS, Johnston C M, ZelenayP . A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability.Chemical Communications (Cambridge), 2013, 49(32): 3291–3293
CrossRef Google scholar
[27]
LiQ, WuG, CullenD A, More K L, MackN H , ChungH T, Zelenay P. Phosphate-tolerant oxygen reduction catalysts.ACS Catalysis, 2014, 4(9): 3193–3200
CrossRef Google scholar
[28]
HeQ G, WuG, LiuK, Khene S, LiQ , MugadzaT, DeunfE, NyokongT, Chen S W. Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media.ChemElectroChem, 2014, 1(9): 1508–1515
CrossRef Google scholar
[29]
HeQ, LiQ, KheneS, Ren X, López-Suárez F E, Lozano-CastellóD, Bueno-LópezA , WuG. High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells.Journal of Physical Chemistry, 2013, 117(17): 8697–8707
[30]
WuG, MackN H, GaoW, Ma S, ZhongR , HanJ, Baldwin J K, ZelenayP . Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O 2 battery cathodes.ACS Nano, 2012, 6(11): 9764–9776
CrossRef Google scholar
[31]
LiQ, PanH, HigginsD, Cao R, ZhangG , LvH, WuK, ChoJ, Wu G. Metal-organic framework derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts.Small, 2015, 11(12): 1443–1452
CrossRef Google scholar
[32]
LiQ, WangT, HavasD, Zhang H, XuP , HanJ, ChoJ, WuG. High-performance direct methanol fuel cells with precious-metal-free cathode.Advancement of Science, 2016, 3(11): 1600140
[33]
WangX, LiQ, PanH, Lin Y, KeY , ShengH, Swihart M T, WuG . Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction.Nanoscale, 2015, 7(47): 20290–20298
CrossRef Google scholar
[34]
ParvezK, YangS, HernandezY, Winter A, TurchaninA , FengX, Müllen K. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction.ACS Nano, 2012, 6(11): 9541–9550
CrossRef Google scholar
[35]
QuL, LiuY, BaekJ B, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.ACS Nano, 2010, 4(3): 1321–1326
CrossRef Google scholar
[36]
ByonH R, Suntivich J, Shao-HornY . Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid.Chemistry of Materials, 2011, 23(15): 3421–3428
CrossRef Google scholar
[37]
LaiL, PottsJ R, ZhanD, Wang L, PohC K , TangC, GongH, ShenZ, Lin J, RuoffR S . Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction.Energy & Environmental Science, 2012, 5(7): 7936–7942
CrossRef Google scholar
[38]
LiY, WangJ, LiX, GengD, BanisM N, Li R, SunX . Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries.Electrochemistry Communications, 2012, 18(0): 12–15
CrossRef Google scholar
[39]
LiY G, ZhouW, WangH, Xie L, LiangY , WeiF, IdroboJ C, PennycookS J , DaiH. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes.Nature Nanotechnology, 2012, 7(6): 394–400
CrossRef Google scholar
[40]
XiaoJ, MeiD, LiX, XuW, WangD, Graff G L, BennettW D , NieZ, SarafL V, AksayI A, Liu J, ZhangJ G . Hierarchically porous graphene as a lithium–air battery electrode.Nano Letters, 2011, 11(11): 5071–5078
CrossRef Google scholar
[41]
ShuiJ L, KaranN K, BalasubramanianM , LiS Y, LiuD J. Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction.Journal of the American Chemical Society, 2012, 134(40): 16654–16661
CrossRef Google scholar
[42]
PylypenkoS, Mukherjee S, OlsonT S , AtanassovP. Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles.Electrochimica Acta, 2008, 53(27): 7875–7883
CrossRef Google scholar
[43]
NiwaH, HoribaK, HaradaY, Oshima M, IkedaT , TerakuraK, OzakiJ, MiyataS. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells.Journal of Power Sources, 2009, 187(1): 93–97
CrossRef Google scholar
[44]
MamtaniK, OzkanU S. Heteroatom-doped carbon nanostructures as oxygen reduction reaction catalysts in acidic media: an overview.Catalysis Letters, 2015, 145(1): 436–450
CrossRef Google scholar
[45]
Wiggins-CamachoJ D, Stevenson K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes.Journal of Physical Chemistry, 2011, 115(40): 20002–20010
[46]
JaouenF, Goellner V, LefèvreM , HerranzJ, Proietti E, DodeletJ . Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active Fe N C catalysts.Electrochimica Acta, 2013, 87: 619–628
CrossRef Google scholar
[47]
NallathambiV, Leonard N, KothandaramanR , BartonS C. Nitrogen precursor effects in iron-nitrogen-carbon oxygen reduction catalysts.Electrochemical and Solid-State Letters, 2011, 14(6): B55–B58
CrossRef Google scholar
[48]
WuJ, YangZ, LiX, SunQ, JinC, Strasser P, YangR . Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction.Journal of Materials Chemistry, 2013, 1(34): 9889–9896
CrossRef Google scholar
[49]
RamaswamyN, TylusU, JiaQ, Mukerjee S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry.Journal of the American Chemical Society, 2013, 135(41): 15443–15449
CrossRef Google scholar
[50]
JaouenF, Herranz J, LefevreM , DodeletJ P, KrammU I, HerrmannI, Bogdanoff P, MaruyamaJ , NagaokaT, Garsuch A, DahnJ R , OlsonT, Pylypenko S, AtanassovP , UstinovE A. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction.ACS Applied Materials & Interfaces, 2009, 1(8): 1623–1639
CrossRef Google scholar
[51]
LiangJ, JiaoY, JaroniecM, Qiao S Z. Sulfur and nitrogen dual‐doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance.Angewandte Chemie International Edition, 2012, 51(46): 11496–11500
CrossRef Google scholar
[52]
JiaoY, ZhengY, JaroniecM, Qiao S Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance.Journal of the American Chemical Society, 2014, 136(11): 4394–4403
CrossRef Google scholar
[53]
GanesanS, Leonard N, BartonS C . Impact of transition metal on nitrogen retention and activity of iron–nitrogen–carbon oxygen reduction catalysts.Physical Chemistry Chemical Physics, 2014, 16(10): 4576–4585
CrossRef Google scholar
[54]
GongY, FeiH, ZouX, Zhou W, YangS , YeG, LiuZ, PengZ, Lou J, VajtaiR , YakobsonB I, TourJ M, AjayanP M. Boron- and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction.Chemistry of Materials, 2015, 27(4): 1181–1186
CrossRef Google scholar
[55]
StricklandK, MinerE, JiaQ, Tylus U, RamaswamyN , LiangW, Sougrati M T, JaouenF , MukerjeeS. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.Nature Communications, 2015, 6: 7343
CrossRef Google scholar
[56]
JiaQ, Ramaswamy N, HafizH , TylusU, Strickland K, WuG , BarbielliniB, BansilA, HolbyE F, Zelenay P, MukerjeeS . Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity.ACS Nano, 2015, 9(12): 12496–12505
CrossRef Google scholar
[57]
GaoW, HavasD, GuptaS, Pan Q, HeN , ZhangH, WangH L, WuG. Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts?Carbon, 2016, 102: 346–356
CrossRef Google scholar
[58]
WuG, Johnston C M, MackN H , ArtyushkovaK, Ferrandon M, NelsonM , Lezama-PachecoJ S, Conradson S D, MoreK L , MyersD J, Zelenay P. Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells.Journal of Chemistry Materials, 2011, 21(30): 11392–11405
CrossRef Google scholar
[59]
ShengH, WeiM, D’AloiaA , WuG. Heteroatom polymer-derived 3D high-surface-area and mesoporous graphene sheet-like carbon for supercapacitors.ACS Applied Materials & Interfaces, 2016, 8(44): 30212–30224
CrossRef Google scholar
[60]
WuG, Artyushkova K, FerrandonM , KropfA J, MyersD, ZelenayP. Performance durability of polyaniline-derived non-precious cathode catalysts.ECS Transactions, 2009, 25(1): 1299–1311
[61]
WuG, Zelenay P. Nanostructured non-precious metal catalysts for oxygen reduction reaction.Accounts of Chemical Research, 2013, 46(8): 1878–1889
CrossRef Google scholar
[62]
GuptaS, ZhaoS, OgokeO, Lin Y, XuH , WuG. Engineering favorable morphology and structure of Fe-N-C oxygen-reduction catalysts via tuning nitrogen/carbon precursors.ChemSusChem, 2017, 10(4): 774–785
CrossRef Google scholar
[63]
WuG, NelsonM A, MackN H, Ma S, SekharP , GarzonF H, Zelenay P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst.Chemical Communications, 2010, 46(40): 7489–7491
CrossRef Google scholar
[64]
LiQ, WuG, CullenD A, More K L, MackN H , ChungH, Zelenay P. Phosphate-tolerant oxygen reduction catalysts.ACS Catalysis, 2014, 4(9): 3193–3200
CrossRef Google scholar
[65]
WuG, MoreK L, XuP, WangH L, FerrandonM, Kropf A J, MyersD J , MaS, Johnston C M, ZelenayP . Carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability.Chemical Communications (Cambridge), 2013, 49(32): 3291–3293
CrossRef Google scholar
[66]
ChungH T, WuG, LiQ, Zelenay P. Role of two carbon phases in oxygen reduction reaction on the Co-PPy-C catalyst.International Journal of Hydrogen Energy, 2014, 39(28): 15887–15893
CrossRef Google scholar
[67]
FerrandonM, KropfA J, MyersD J, Artyushkova K, KrammU , BogdanoffP, WuG, JohnstonC M , ZelenayP. Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst.Journal of Physical Chemistry, 2012, 116(30): 16001–16013
[68]
FerrandonM, WangX, KropfA J, Myers D J, WuG , JohnstonC M, Zelenay P. Stability of iron species in heat-treated polyaniline-iron-carbon polymer electrolyte fuel cell cathode catalysts.Electrochimica Acta, 2013, 110: 282–291
CrossRef Google scholar
[69]
WengL T, Bertrand P, LalandeG , GuayD, Dodelet J P. Surface characterization by time-of-flight SIMS of a catalyst for oxygen electroreduction: pyrolyzed cobalt phthalocyanine-on-carbon black.Applied Surface Science, 1995, 84(1): 9–21
CrossRef Google scholar
[70]
WuG, NelsonM, MaS, MengH, CuiG, Shen P K. Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction.Carbon, 2011, 49(12): 3972–3982
CrossRef Google scholar
[71]
LinZ, ChuH, ShenY, Wei L, LiuH , LiY. Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance.Chemical Communications, 2009, 46(46): 7167–7169
CrossRef Google scholar
[72]
LeeS U, Belosludov R V, MizusekiH , KawazoeY. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes.Small, 2009, 5(15): 1769–1775
CrossRef Google scholar
[73]
MatterP H, ZhangL, OzkanU S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96
[74]
ZhangH, OsgoodH, XieX, Shao Y, WuG . Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks.Nano Energy, 2017, 31: 331–350
CrossRef Google scholar
[75]
BarkholtzH M, LiuD J. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks.Materials Horizons, 2017, 4(1): 20–37
CrossRef Google scholar
[76]
WangX J, ZhangH, LinH, Gupta S, WangC , TaoZ, FuH, WangT, Zheng J, WuG , LiX. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid.Nano Energy, 2016, 25: 110–119
CrossRef Google scholar
[77]
LiuX, ParkM, KimM G, Gupta S, WuG , ChoJ. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc-air batteries.Angewandte Chemie International Edition, 2015, 54(33): 9654–9658
CrossRef Google scholar
[78]
LiuX, LiuW, KoM, ParkM, KimM G, Oh P, ChaeS , ParkS, Casimir A, WuG , ChoJ. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts.Advanced Functional Materials, 2015, 25(36): 5799–5808
CrossRef Google scholar
[79]
TyminskaN, WuG, DupuisM. Water oxidation on oxygen-deficient barium titanate: a first principles study.Journal of Physical Chemistry, 2017, 121(15): 8378–8389
[80]
StamenkovicV, MunB S, MayrhoferK J , RossP N, Markovic N M, RossmeislJ , GreeleyJ, Nørskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure.Angewandte Chemie, 2006, 118(18): 2963–2967
CrossRef Google scholar
[81]
StamenkovicV R, FowlerB, MunB S, Wang G, RossP N , LucasC A, Marković N M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability.Science, 2007, 315(5811): 493–497
CrossRef Google scholar
[82]
ZhangJ, SasakiK, SutterE, Adzic R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters.Science, 2007, 315(5809): 220–222
CrossRef Google scholar
[83]
ZhangL, XiaZ. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells.Journal of Physical Chemistry, 2011, 115(22): 11170–11176
[84]
YangL, JiangS, ZhaoY, Zhu L, ChenS , WangX, WuQ, MaJ, MaY, HuZ. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction.Angewandte Chemie, 2011, 123(31): 7270–7273
CrossRef Google scholar
[85]
HolbyE F, WuG, ZelenayP, Taylor C D. Structure of Fe-Nx-C defects in oxygen reduction reaction catalysts from first principles modeling.Journal of Physical Chemistry, 2014, 118(26): 14388–14393
[86]
HammerB, Norskov J. Why gold is the noblest of all the metals.Nature, 1995, 376(6537): 238–240
CrossRef Google scholar
[87]
NørskovJ K, Bligaard T, RossmeislJ , ChristensenC H. Towards the computational design of solid catalysts.Nature Chemistry, 2009, 1(1): 37–46
CrossRef Google scholar
[88]
ZhangL, NiuJ, DaiL, Xia Z. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells.Langmuir, 2012, 28(19): 7542–7550
CrossRef Google scholar

Acknowledgments

The author acknowledges the Start-up funding from the University at Buffalo (SUNY) along with NSF (CBET-1604392) and US Department of Energy, Fuel Cell Technologies Office (FCTO) Incubator Program (DE-EE000696).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(705 KB)

Accesses

Citations

Detail

Sections
Recommended

/