Impact of renewable energies on the operation and economic situation of coal fired power stations: Actual situation of coal fired power stations in Germany

Hans-Joachim KRAUTZ, Alexander LISK, Joachim POSSELT, Christian KATZER

PDF(274 KB)
PDF(274 KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (2) : 119-125. DOI: 10.1007/s11708-017-0468-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Impact of renewable energies on the operation and economic situation of coal fired power stations: Actual situation of coal fired power stations in Germany

Author information +
History +

Abstract

Due to the fluctuating character of the renewable energy sources the demand of conventional power plants for flexibility is increasing. In the recent years, in Germany there has been a fast rise of production capacity of renewable energies, especially from wind turbines, photovoltaic installations, and biomass plants. The installed nominal power of wind turbines is actually (December 2016) 42 GW and of photovoltaic installations 40 GW. The renewable electric energy production in Germany is about 190 TWh/a, which represents a share of 33% of the yearly demand. The increased need for flexibility affects both the power gradients as well as the minimum load of conventional power plants. Due to this flexibility behaviour, conventional power plants are faced with problems concerning the durability of power plant components, corrosion, more maintenance effort and consequently the overall life expectancy. Another consequence of the increasing share of renewable energies is the decreasing full load operating hours, especially of coal fired and gas power plants. Along with decreasing revenues from the energy exchange market, coal fired power plants are faced with new economically challenges.

Keywords

flexible load operation / minimal load / power gradients / power plant maintenance / corrosion / life expectancy

Cite this article

Download citation ▾
Hans-Joachim KRAUTZ, Alexander LISK, Joachim POSSELT, Christian KATZER. Impact of renewable energies on the operation and economic situation of coal fired power stations: Actual situation of coal fired power stations in Germany. Front. Energy, 2017, 11(2): 119‒125 https://doi.org/10.1007/s11708-017-0468-4

References

[1]
Mohrbach L. Status Report Nuclear in Europe. VGB PowerTech, 2016
[2]
Henning H M, Palzer  A. Energy System Germany 2050 Fraunhofer Institut for Solar Energy Systems ISE, Freiburg, 2013-11-13, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Fraunhofer-ISE_Energiesystem-Deutschland-2050.pdf
[3]
Information for the convertion of the ABLaV Novella: Publication of the simple basic agreement for disconnectable loads. Sehr geehrte Damen und Herren, www.regelleistung.net
[4]
Benato A, Bracco  S, Stoppato A ,  Mirandola A . Dynamic simulation of combined cycle power plant cycling in the electricity market. Energy Conversion and Management, 2016, 107: 76–85 
CrossRef Google scholar
[5]
Lefton S A, Hilleman  D. Make your plant ready for cycling operations. Power, 2011, 155(8): 1–6
[6]
Bader M. Modern choice of construction materials for boiler and pipeline. 30th FDBR-Conference on Pipeline Technology, Magdeburg, 2015
[7]
Moreea-Taha R. Materials development for coal, biomass and waste fuel plants. IEA Clean Coal Centre, 2002-09
[8]
Hesler B S, Power  E. Mitigating the effects of flexible operation on coal-fired power plants from baseload to flexible operation. Power, 2011, 155(8): 50
[9]
Lefton S A, Besuner  P M, Grimsrud  G P. The real cost of cycling power plants: What you don’t know will hurt you. Power, 2002, 146(8): 29–34
[10]
Lechner S. Investigations for the Calculation and Optimization of the Heat Transfer in the Case of the Pressurized Steam Fluidized Bed Drying for the Example of Lusatian Lignite. Dissertation for the Doctoral Degree. Cottbus: Brandenburg University of Technology Cottbus-Senftenberg, 2012
[11]
Asegehegn T W . Investigation of bubble hydrodynamics in gas-solid fluidized beds containing immersed horizontal tube banks for lignite drying application. Dissertation for the Doctoral Degree. Cottbus: Brandenburg University of Technology Cottbus-Senftenberg, 2012
[12]
Schreiber M. Modelling of Hydrodynamics and Heat Transfer in Bubble Forming Fluidized Bed Layers for the Drying of Lignite. Dissertation for the Doctoral Degree. Cottbus: Brandenburg University of Technology, 2013
[13]
Höhne O. Basic Investigations on the Influence of the System Pressure on the Drying Process of Lignite with Steam. Dissertation for the Doctoral Degree. Cottbus: Brandenburg University of Technology, 2012
[14]
Messerle V E, Karpenko  E I, Ustimenko  A B. Plasma assisted power coal combustion in the furnace of utility boiler: numerical modeling and full-scale test. Fuel, 2014, 126: 294–300 
CrossRef Google scholar
[15]
Kanilo P M, Kazantsev  V I, Rasyuk  N I, Schünemann  K, Vavriv D M . Microwave plasma combustion of coal. Fuel, 2003, 82(2): 187–193 
CrossRef Google scholar
[16]
Katzer C, Klatt  M, Lisk A ,  Krautz H-J . First investigation results from an electric ignition system for a pulverized coal-burner system, 27. German Flame Day 2015, VDI-Report 2267
[17]
Heimann G. Successful erection and commissioning of a dry lignite firing system with plasma-induced ignition. VGB PowerTech, 2016, 7: 40–44
[18]
Leisse A, Rehfeldt  S, Meyer D . Ignition behaviour of pulverised solid fuel particles at hot surfaces. VGB PowerTech, 2014, 11: 45–49
[19]
Stoll B, Huwa  W, Lüpke M ,  Leisse A . Lighting-up of pulverised solid fuels at electrically heated fuel nozzles. VGB PowerTech, 2016, 9: 74–78

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(274 KB)

Accesses

Citations

Detail

Sections
Recommended

/